Brittney L Gorman, Catelynn C Shafer, Nagarjunachary Ragi, Kumar Sharma, Elizabeth K Neumann, Christopher R Anderton
The application of spatially resolved mass spectrometry (MS) and MS imaging approaches for studying biomolecular processes in the kidney is rapidly growing. These powerful methods, which enable label-free and multiplexed detection of many molecular classes across omics domains (including metabolites, drugs, proteins and protein post-translational modifications), are beginning to reveal new molecular insights related to kidney health and disease. The complexity of the kidney often necessitates multiple scales of analysis for interrogating biofluids, whole organs, functional tissue units, single cells and subcellular compartments. Various MS methods can generate omics data across these spatial domains and facilitate both basic science and pathological assessment of the kidney. Optimal processes related to sample preparation and handling for different MS applications are rapidly evolving. Emerging technology and methods, improvement of spatial resolution, broader molecular characterization, multimodal and multiomics approaches and the use of machine learning and artificial intelligence approaches promise to make these applications even more valuable in the field of nephology. Overall, spatially resolved MS and MS imaging methods have the potential to fill much of the omics gap in systems biology analysis of the kidney and provide functional outputs that cannot be obtained using genomics and transcriptomic methods.