Enhanced isolation in aperture fed dielectric resonator MIMO antennas for 5G Sub 6 GHz applications.

Arpita Patel, Trushit Upadhyaya, Pandey Rajat Girjashankar, M V Swati, Om Prakash Kumar
Author Information
  1. Arpita Patel: Electronics and Communication Department, Chandubhai S. Patel Institute of Technology, Charotar University of Science & Technology, Changa, Gujarat, India.
  2. Trushit Upadhyaya: Electronics and Communication Department, Chandubhai S. Patel Institute of Technology, Charotar University of Science & Technology, Changa, Gujarat, India.
  3. Pandey Rajat Girjashankar: Electronics and Communication Department, Government Engineering College, Gandhinagar, Gujarat, India.
  4. M V Swati: Department of Electronics and Communications Engineering, National Institute of Technology (NIT) Silchar, Silchar, Assam, 788010, India.
  5. Om Prakash Kumar: Department of Electronics and Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India. omprakash.kumar@manipal.edu.

Abstract

A quad-port dielectric resonator antenna (DRA) is proposed for sub-6 GHz 5G MIMO applications, featuring high isolation, dual-band operation, and enhanced efficiency. The antenna is designed using electromagnetic coupling with a triangular patch to excite the square dielectric resonators (DRs) at targeted resonance modes (TE and TE), achieving broadband and polarization diversity. The proposed structure exhibits self-isolation above 20 dB without requiring additional decoupling structures. The use of Alumina (��r���=���9.9, tan�����=���0.0001) ensures low loss, high efficiency (88.9% and 93.8%), and strong radiation performance, with peak gains of 9.12 dBi and 8.58 dBi at 3.72 GHz and 4.75 GHz, respectively. The full ground plane and optimized spatial placement further contribute to reduced mutual coupling and improved diversity performance, achieving an envelope correlation coefficient (ECC) of 0.042 and channel capacity loss (CCL) below 0.2 bits/s/Hz. The proposed antenna's measured results align closely with simulations, confirming its suitability for high-performance 5G MIMO communication systems.

Keywords

References

  1. Satka, Z. et al. A comprehensive systematic review of integration of time sensitive networking and 5G communication. J. Syst. Architect. 138, 102852 (2023). [DOI: 10.1016/j.sysarc.2023.102852]
  2. Liu, X., Zhang, W., Hao, D. & Liu, Y. Cost-effective broadband and compact patch antenna based on ball grid array packaging for 5G NR FR2 band applications. IEEE Trans. Circuits Syst. Express Briefs. 70, 1921���1925 (2023). [DOI: 10.1109/TCSII.2022.3233381]
  3. Patel, U. & Upadhyaya, T. K. Low profile surface mountable compact microstrip antenna for GPS/WLAN applications. Int. J. Microw. Opt. Technol. 16(4), 335���342 (2021).
  4. Raj, T., Mishra, R., Kumar, P. & Kapoor, A. Advances in MIMO antenna design for 5G: A comprehensive review. Sensors 23(14), 6329 (2023). [PMID: 37514623]
  5. Ibrahim, S. K. et al. Design, challenges, and developments for 5G massive MIMO antenna systems at sub-6-GHz band: a review. Nanomaterials 13(3), 520 (2023). [PMID: 36770483]
  6. Anbarasu, M. & Nithiyanantham, J. Performance analysis of highly efficient two-port MIMO antenna for 5G wearable applications. IETE J. Res. 69(6), 3594���3603 (2023). [DOI: 10.1080/03772063.2021.1926345]
  7. Tiwari, P. et al. Advancing 5G connectivity: a comprehensive review of MIMO antennas for 5G applications. Int. J. Antennas Propag. 2023(1), 9431221 (2023).
  8. Chen, Z., Yuan, X. T., Ren, J. & Yuan, T. An ultra-wideband MIMO antenna for 5G smartphone. AEU Int. J. Electron. Commun. 154, 154301 (2022). [DOI: 10.1016/j.aeue.2022.154301]
  9. Ikram, M., Sultan, K. S., Abbosh, A. M. & Nguyen-Trong, N. Sub-6 GHz and mm-wave 5g vehicle-to-everything (5g���v2x) mimo antenna array. IEEE Access 10, 49688���49695 (2022). [DOI: 10.1109/ACCESS.2022.3172931]
  10. Kanagasabai, M., Shanmuganathan, S., Alsath, M. & Palaniswamy, S. K. A novel low-profile 5G MIMO antenna for vehicular communication. Int. J. Antennas Propag. 2022(1), 9431221 (2022).
  11. Al-Bawri, S. S., Islam, M. T., Islam, M. S., Singh, M. J. & Alsaif, H. Massive metamaterial system-loaded MIMO antenna array for 5G base stations. Sci. Rep. 12(1), 14311 (2022). [PMID: 35995831]
  12. Ravi, K. C. & Kumar, J. Multi-directional wideband unit-element MIMO antenna for FR-2 band 5G array applications. Iran. J. Sci. Technol. Trans. Electr. Eng. 46(2), 311���317 (2022). [DOI: 10.1007/s40998-022-00486-5]
  13. El-Nady, S. M., Abd El-Hameed, A. S., Eldesouki, E. M. & Soliman, S. A. Circularly polarized MIMO filtering dielectric resonator antenna for 5G sub-6 GHz applications. AEU Int. J. Electron. Commun. 171, 154882 (2023). [DOI: 10.1016/j.aeue.2023.154882]
  14. Muhammad, A., Khan, M. U., Malfajani, R. S., Sharawi, M. S. & Alathbah, M. An integrated DRA-based large frequency ratio antenna system consisting of a MM-wave array and a MIMO antenna for 5G applications. IEEE Open J. Antennas Propag. 5, 368���378 (2024). [DOI: 10.1109/OJAP.2024.3349455]
  15. Nasir, J. et al. A reduced size dual port MIMO DRA with high isolation for 4G applications. Int. J. RF Microw. Comput. Aided Eng. 25(6), 495���501 (2015). [DOI: 10.1002/mmce.20884]
  16. Basu, S. 5G millimeter wave MIMO dielectric resonator antenna. Telecommun. Radio Eng. 82, 12 (2023). [DOI: 10.1615/TelecomRadEng.2023047659]
  17. Elahi, M., Altaf, A., Almajali, E. & Yousaf, J. Mutual coupling reduction in closely spaced MIMO dielectric resonator antenna in H-plane using closed metallic loop. IEEE Access 10, 71576���71583 (2022). [DOI: 10.1109/ACCESS.2022.3187433]
  18. Sandi, E., Diamah, A. & Al Mawaddah, M. High isolation MIMO antenna for 5G C-band application by using combination of dielectric resonator, electromagnetic bandgap, and defected ground structure. EURASIP J. Wirel. Commun. Netw. 2022(1), 125 (2022). [DOI: 10.1186/s13638-022-02208-1]
  19. Iqbal, A. et al. A CPW fed quad-port MIMO DRA for sub-6 GHz 5G applications. PLoS ONE 17(6), e0268867 (2022). [PMID: 35687613]
  20. Girjashankar, P. R., Upadhyaya, T. & Desai, A. Multiband hybrid MIMO DRA for Sub-6 GHz 5G and WiFi-6 applications. Int. J. RF Microw. Comput. Aided Eng. 32(12), e23479 (2022). [DOI: 10.1002/mmce.23479]
  21. Upadhyaya, T. et al. Aperture-fed quad-port dual-band dielectric resonator-MIMO antenna for Sub-6 GHz 5G and WLAN application. Int. J. Antennas Propag. 2022, 1���13 (2022). [DOI: 10.1155/2022/4136347]
  22. Patel, U. & Upadhyaya, T. Four-port dual-band multiple-input multiple-output dielectric resonator antenna for Sub-6 GHz 5G communication applications. Micromachines 13(11), 2022 (2022). [PMID: 36422450]
  23. Kumar, R., Chandra, A., Mishra, N. & Chaudhary, R. K. A frequency tunable dielectric resonator antenna with reduction of cross polarisation for Wi-MAX and Sub-6 GHz 5G applications. Defence Sci. J. 73, 4 (2023). [DOI: 10.14429/dsj.73.18180]
  24. Agrawal, N., Gupta, M. & Chouhan, S. Modified ground and slotted MIMO antennas for 5G sub-6 GHz frequency bands. Int. J. Microw. Wirel. Technol. 15(5), 817���825 (2023). [DOI: 10.1017/S1759078722000770]
  25. Tran, H. H., Nguyen, T. T. L., Ta, H. N. & Pham, D. P. A metasurface-based MIMO antenna with compact, wideband, and high isolation characteristics for Sub-6 GHz 5G applications. IEEE Access 11, 67737���67744 (2023). [DOI: 10.1109/ACCESS.2023.3292303]
  26. Ameen, M. & Chaudhary, R. K. Isolation Enhancement of Metamaterial-Inspired Two-Port MIMO Antenna Using Hybrid Techniques (Express Briefs, 2023). [DOI: 10.1109/TCSII.2023.3237831]
  27. Suganya, E. et al. An isolation improvement for closely spaced MIMO antenna using ��/4 distance for WLAN applications. Int. J. Antennas Propag. 2023, 1���13 (2023). [DOI: 10.1155/2023/4839134]
  28. Khan, I., Zhang, K., Ali, L. & Wu, Q. Enhanced quad-port MIMO antenna isolation with metamaterial superstrate. IEEE Antennas Wirel. Propag. Lett. 23, 439���443 (2023). [DOI: 10.1109/LAWP.2023.3328002]
  29. Kumar, A., De, A. & Jain, R. K. Size miniaturization and isolation enhancement of two-element antenna for sub-6 GHz applications. IETE J. Res. 69(9), 6006���6013 (2023). [DOI: 10.1080/03772063.2021.1987994]
  30. Kethavathu, S. N., Singam, A. & Muthusamy, P. Compact symmetrical slot coupled linearly polarized two/four/eight element MIMO bowtie DRA for WLAN applications. AEU Int. J. Electron. Commun. 135, 153729 (2021). [DOI: 10.1016/j.aeue.2021.153729]
  31. Sharawi, M. S., Numan, A. B. & Aloi, D. N. Isolation improvement in a dual-band dual-element MIMO antenna system using capacitively loaded loops. Progress Electromag. Res. 134, 247���266 (2013). [DOI: 10.2528/PIER12090610]
  32. Sharma, A., Das, G., Ranjan, P., Sahu, N. K. & Gangwar, R. K. Novel feeding mechanism to stimulate triple radiating modes in cylindrical dielectric resonator antenna. IEEE Access 4, 9987���9992 (2016). [DOI: 10.1109/ACCESS.2016.2633361]
  33. Dwivedi, A. K., Sharma, A., Singh, A. K. & Singh, V. Quad-port ring dielectric resonator based MIMO radiator with polarization and space diversity. Microw. Opt. Technol. Lett. 62(6), 2316���2327 (2020). [DOI: 10.1002/mop.32329]
  34. Rafique, U. et al. Uni-planar MIMO antenna for sub-6 GHz 5G mobile phone applications. Appl. Sci. 12(8), 3746 (2022). [DOI: 10.3390/app12083746]
  35. Krishnamoorthy, R., Desai, A., Patel, R. & Grover, A. 4 Element compact triple band MIMO antenna for sub-6 GHz 5G wireless applications. Wirel. Netw. 27(6), 3747���3759 (2021). [DOI: 10.1007/s11276-021-02734-8]
  36. Kulkarni, J., Desai, A. & Sim, C. Y. D. Wideband four-port MIMO antenna array with high isolation for future wireless systems. AEU-Int. J. Electron. Commun. 128, 153507 (2021). [DOI: 10.1016/j.aeue.2020.153507]
  37. Yang, M. & Zhou, J. A compact pattern diversity MIMO antenna with enhanced bandwidth and high-isolation characteristics for WLAN/5G/WiFi applications. Microw. Opt. Technol. Lett. 62(6), 2353���2364 (2020). [DOI: 10.1002/mop.32334]
  38. Ali, A. et al. Design process of a compact tri-band MIMO antenna with wideband characteristics for sub-6 GHz, Ku-band, and millimeter-wave applications. Ain Shams Eng. J. 15(3), 102579 (2024). [DOI: 10.1016/j.asej.2023.102579]
  39. Iffat Naqvi, S. et al. Integrated LTE and millimeter-wave 5G MIMO antenna system for 4G/5G wireless terminals. Sensors 20(14), 3926 (2020). [PMID: 32679659]
  40. Kulkarni, J., Alharbi, A. G., Desai, A., Sim, C. Y. D. & Poddar, A. Design and analysis of wideband flexible self-isolating MIMO antennas for sub-6 GHz 5G and WLAN smartphone terminals. ElectronB. Smith, ���An approach to graphs of linear forms��� (unpublished) (2021).
  41. Basu, S. Design and analysis of hybrid multiband MIMO antenna for WLAN and Sub-6 GHz 5G applications. Int. J. RF Microw. Comput. Aided Eng. 16, 605���624 (2023).
  42. Kumar, R. et al. A frequency-tunable dielectric resonator antenna with reduction of cross-polarization for WiMAX and sub-6 GHz 5G applications. Defence Sci. J. 73, 4 (2024).
  43. Tran, H. H. et al. A metasurface-based MIMO antenna with compact, wideband, and high isolation characteristics for sub-6 GHz 5G applications. IEEE Access 11, 67737���67744 (2024). [DOI: 10.1109/ACCESS.2023.3292303]
  44. Huang, Y. Antennas: From Theory to Practice (Wiley, 2021).
  45. Kuznetcov, M. V., Podilchak, S. K., Cl��net, M. & Antar, Y. M. M. Hybrid dielectric resonator antenna for diversity applications with linear or circular polarization. IEEE Trans. Antennas Propag. 69(8), 4457���4465 (2021). [DOI: 10.1109/TAP.2021.3060034]
  46. Huitema, L. & Mon��di��re, T. Dielectric materials for compact dielectric resonator antenna applications. Dielectric Mater. 2, 28���58 (2012).
  47. Luk, K. M. & Leung, K. W. Dielectric Resonator Antennas (No 25916) (Research Studies Press, 2003).
  48. Petosa, A. Dielectric Resonator Antenna Handbook (Artech, 2007).

Word Cloud

Created with Highcharts 10.0.05GdielectricantennaMIMOresonatorproposed9DRAapplicationshighisolationefficiencycouplingresonatorsTEachievingdiversitylossperformance0quad-portsub-6 GHzfeaturingdual-bandoperationenhanceddesignedusingelectromagnetictriangularpatchexcitesquareDRstargetedresonancemodesbroadbandpolarizationstructureexhibitsself-isolation20 dBwithoutrequiringadditionaldecouplingstructuresuseAlumina��r���=���9tan�����=���00001ensureslow889%938%strongradiationpeakgains12 dBi858 dBi372 GHz475 GHzrespectivelyfullgroundplaneoptimizedspatialplacementcontributereducedmutualimprovedenvelopecorrelationcoefficientECC042channelcapacityCCL2 bits/s/Hzantenna'smeasuredresultsaligncloselysimulationsconfirmingsuitabilityhigh-performancecommunicationsystemsEnhancedaperturefedantennasSub6 GHzSub-6 GHztechnologyDielectricRectangularSDG

Similar Articles

Cited By

No available data.