O-Antigen Gene Cluster Reveals Genomic Variation in Chilean Tenacibaculum dicentrarchi Through Multiplex PCR-Based Genotyping Scheme.

Pierre Lopez, Ruben Avendaño-Herrera
Author Information
  1. Pierre Lopez: Laboratorio de Organismos Acuáticos y Biotecnología Acuícola, Universidad Andrés Bello, Viña del Mar, Chile. ORCID
  2. Ruben Avendaño-Herrera: Laboratorio de Organismos Acuáticos y Biotecnología Acuícola, Universidad Andrés Bello, Viña del Mar, Chile. ORCID

Abstract

Tenacibaculum dicentrarchi emerged as a major pathogen in Chilean salmon farming in early 2023, causing 32.9% of Atlantic salmon (Salmo salar) mortalities. Although recent studies have provided valuable insights into T. dicentrarchi through virulence mechanisms and genome analysis, genetic diversity based on the O-antigen gene cluster remains largely unexplored. In this study, we conducted a comparative genomic analysis of O-antigen biosynthesis genes in 30 whole-genome sequenced strains, including the T. dicentrarchi type strain. The analysis identified a single O-antigen gene cluster (O-AGC) consisting of 20 genes involved in the biosynthesis of this component of the lipopolysaccharide layer. Variations in the O-AGC revealed antigenic diversity within the species, allowing classification into four distinct groups, designated Types 1 to 4. Based on these findings, we developed a multiplex PCR-based genotyping scheme, which was successfully applied to 25 bacterial isolates from Chilean fish farms. Most isolates were identified as Type 1 and 3, while Types 2 and 4 were less common, with the same number of isolates. We also investigated whether core genome phylogeny correlated with O-AGC Types by including publicly available genomes from Chile, Norway and Canada. Notably, T. dicentrarchi isolates clustered into two groups: one comprising isolates from Norway and Canada, all belonging to Type 1. Another group consisted of Chilean isolates with diverse O-AGC Types (i.e., 1, 2, 3 and 4), including the type strain. This multiplex PCR approach provided a valuable tool for rapid and reliable typing of T. dicentrarchi, facilitating epidemiological studies and aiding in the selection of appropriate isolates for the vaccine development against tenacibaculosis in fish farms.

Keywords

References

  1. Avendaño‐Herrera, R., C. Collarte, M. Saldarriaga‐Córdoba, and R. Irgang. 2020. “New Salmonid Hosts for Tenacibaculum Species: Expansion of Tenacibaculosis in Chilean Aquaculture.” Journal of Fish Diseases 43, no. 9: 1077–1085. https://doi.org/10.1111/jfd.13213.
  2. Avendaño‐Herrera, R., R. Irgang, C. Sandoval, et al. 2016. “Isolation, Characterization and Virulence Potential of Tenacibaculum dicentrarchi in Salmonid Cultures in Chile.” Transboundary and Emerging Diseases 63, no. 2: 121–126. https://doi.org/10.1111/tbed.12464.
  3. Avendaño‐Herrera, R., B. Magariños, S. López‐Romalde, J. L. Romalde, and A. E. Toranzo. 2004. “Phenotypic Characterization and Description of Two Major O‐Serotypes in Tenacibaculum maritimum Strains From Marine Fishes.” Diseases of Aquatic Organisms 58, no. 1: 1–8. https://doi.org/10.3354/dao058001.
  4. Avendaño‐Herrera, R., A. B. Olsen, M. Saldarriaga‐Cordoba, et al. 2022. “Isolation, Identification, Virulence Potential and Genomic Features of Tenacibaculum Piscium Isolates Recovered From Chilean Salmonids.” Transboundary and Emerging Diseases 69, no. 5: e3305–e3315. https://doi.org/10.1111/tbed.14606.
  5. Avendaño‐Herrera, R., M. Saldarriaga‐Córdoba, M. Echeverría‐Bugueño, and R. Irgang. 2023. “In Vitro Phenotypic Evidence for the Utilization of Iron From Different Sources and Siderophores Production in the Fish Pathogen Tenacibaculum dicentrarchi.” Journal of Fish Diseases 46, no. 9: 1001–1012. https://doi.org/10.1111/jfd.13820.
  6. Ballmer, K., B. M. Korczak, P. Kuhnert, P. Slickers, R. Ehricht, and H. Hächler. 2007. “Fast DNA Serotyping of Escherichia coli by Use of an Oligonucleotide Microarray.” Journal of Clinical Microbiology 45, no. 2: 370–379. https://doi.org/10.1128/JCM.01361‐06.
  7. Bridel, S., A.‐B. Olsen, H. Nilsen, et al. 2018. “Comparative Genomics of Tenacibaculum Dicentrarchi and “Tenacibaculum Finnmarkense” Highlights Intricate Evolution of Fish‐Pathogenic Species.” Genome Biology and Evolution 10, no. 2: 452–457. https://doi.org/10.1093/gbe/evy020.
  8. Cao, H., M. Wang, Q. Wang, et al. 2018. “Identifying Genetic Diversity of O Antigens in Aeromonas hydrophila for Molecular Serotype Detection.” PLoS One 13, no. 9: e0203445. https://doi.org/10.1371/journal.pone.0203445.
  9. Echeverría‐Bugueño, M., and R. Avendaño‐Herrera. 2024. “Tenacibaculum dicentrarchi Produce Outer Membrane Vesicles (OMV) That Are Associated With the Cytotoxic Effect in Rainbow Trout Head Kidney Macrophages.” Journal of Fish Diseases 47, no. 2: e13888. https://doi.org/10.1111/jfd.13888.
  10. Edgar, R. C. 2004. “MUSCLE: Multiple Sequence Alignment With High Accuracy and High Throughput.” Nucleic Acids Research 32, no. 5: 1792–1797. https://doi.org/10.1093/nar/gkh340.
  11. Erridge, C., E. Bennett‐Guerrero, and I. R. Poxton. 2002. “Structure and Function of Lipopolysaccharides.” Microbes and Infection 4, no. 8: 837–851. https://doi.org/10.1016/S1286‐4579(02)01604‐0.
  12. FAO. 2022. “The State of World Fisheries and Aquaculture 2022. Fisheries and Aquaculture Projections. Part 4. Emerging Issues and Outlook.” https://www.fao.org/3/cc0461en/online/sofia/2022/fisheries‐and‐aquaculture‐projections.html.
  13. Habib, C., A. Houel, A. Lunazzi, et al. 2014. “Multilocus Sequence Analysis of the Marine Bacterial Genus Tenacibaculum Suggests Parallel Evolution of Fish Pathogenicity and Endemic Colonization of Aquaculture Systems.” Applied and Environmental Microbiology 80, no. 17: 5503–5514. https://doi.org/10.1128/AEM.01177‐14.
  14. Irgang, R., R. González‐Luna, J. Gutiérrez, et al. 2017. “First Identification and Characterization of Tenacibaculum dicentrarchi Isolated From Chilean Red Conger Eel (Genypterus chilensis, Guichenot 1848).” Journal of Fish Diseases 40, no. 12: 1915–1920. https://doi.org/10.1111/jfd.12643.
  15. Katoh, K., J. Rozewicki, and K. D. Yamada. 2019. “MAFFT Online Service: Multiple Sequence Alignment, Interactive Sequence Choice and Visualization.” Briefings in Bioinformatics 20, no. 4: 1160–1166. https://doi.org/10.1093/bib/bbx108.
  16. Klakegg, Ø., T. Abayneh, A. K. Fauske, M. Fülberth, and H. Sørum. 2019. “An Outbreak of Acute Disease and Mortality in Atlantic Salmon (Salmo salar) Post‐Smolts in Norway Caused by Tenacibaculum dicentrarchi.” Journal of Fish Diseases 42, no. 6: 789–807. https://doi.org/10.1111/jfd.12982.
  17. Krogh, A., B. Larsson, G. von Heijne, and E. L. L. Sonnhammer. 2001. “Predicting Transmembrane Protein Topology With a Hidden Markov Model: Application to Complete genomes11Edited by F. Cohen.” Journal of Molecular Biology 305, no. 3: 567–580. https://doi.org/10.1006/jmbi.2000.4315.
  18. Lagadec, E., S. B. Småge, C. Trösse, and A. Nylund. 2021. “Phylogenetic Analyses of Norwegian Tenacibaculum Strains Confirm High Bacterial Diversity and Suggest Circulation of Ubiquitous Virulent Strains.” PLoS One 16, no. 10: e0259215. https://doi.org/10.1371/journal.pone.0259215.
  19. Lane, D. J. 1991. “16S/23S rRNA Sequencing.” In Nucleic Acid Techniques in Bacterial Systematics, edited by E. Stackebrandt and M. Goodfellow, 115–175. John Wiley and Sons.
  20. Le Brun, A. P., L. A. Clifton, C. E. Halbert, et al. 2013. “Structural Characterization of a Model Gram‐Negative Bacterial Surface Using Lipopolysaccharides From Rough Strains of Escherichia coli.” Biomacromolecules 14, no. 6: 2014–2022. https://doi.org/10.1021/bm400356m.
  21. Li, Y., J. Huang, X. Wang, C. Xu, T. Han, and X. Guo. 2020. “Genetic Characterization of the O‐Antigen and Development of a Molecular Serotyping Scheme for Enterobacter cloacae.” Frontiers in Microbiology 11: 727. https://doi.org/10.3389/fmicb.2020.00727.
  22. Liu, Z., H. Zheng, M. Gottschalk, et al. 2013. “Development of Multiplex PCR Assays for the Identification of the 33 Serotypes of Streptococcus suis.” PLoS One 8, no. 8: e72070. https://doi.org/10.1371/journal.pone.0072070.
  23. Lopez, P., S. Bridel, D. Saulnier, et al. 2022. “Genomic Characterization of Tenacibaculum maritimum O‐Antigen Gene Cluster and Development of a Multiplex PCR‐Based Serotyping Scheme.” Transboundary and Emerging Diseases 69, no. 5: e2876–e2888. https://doi.org/10.1111/tbed.14637.
  24. Ma, L., L. Wang, Y. Chu, et al. 2016. “Characterization of Chinese Haemophilus parasuis Isolates by Traditional Serotyping and Molecular Serotyping Methods.” PLoS One 11, no. 12: e0168903. https://doi.org/10.1371/journal.pone.0168903.
  25. Mata, M., A. Skarmeta, and Y. Santos. 2002. “A Proposed Serotyping System for Flavobacterium psychrophilum.” Letters in Applied Microbiology 35, no. 2: 166–170. https://doi.org/10.1046/j.1472‐765x.2002.01157.x.
  26. Nowlan, J. P., S. R. Britney, J. S. Lumsden, and S. Russell. 2021. “Experimental Induction of Tenacibaculosis in Atlantic Salmon (Salmo salar L.) Using Tenacibaculum maritimum, T. dicentrarchi, and T. finnmarkense.” Pathogens 10, no. 11: 1439. https://doi.org/10.3390/pathogens10111439.
  27. Olson, R. D., R. Assaf, T. Brettin, et al. 2023. “Introducing the Bacterial and Viral Bioinformatics Resource Center (BV‐BRC): A Resource Combining PATRIC, IRD and ViPR.” Nucleic Acids Research 51, no. D1: D678–D689. https://doi.org/10.1093/nar/gkac1003.
  28. Pazos, F., Y. Santos, A. R. Macias, S. Nuñez, and A. E. Toranzo. 1996. “Evaluation of Media for the Successful Culture of Flexibacter maritimus.” Journal of Fish Diseases 19: 193–197. https://doi.org/10.1111/j.1365‐2761.1996.tb00701.x.
  29. Piñeiro‐Vidal, M., D. Gijón, C. Zarza, and Y. Santos. 2012. “Tenacibaculum dicentrarchi sp. nov., a Marine Bacterium of the Family Flavobacteriaceae Isolated From European Sea Bass.” International Journal of Systematic and Evolutionary Microbiology 62, no. 2: 425–429. https://doi.org/10.1099/ijs.0.025122‐0.
  30. Rochat, T., E. Fujiwara‐Nagata, S. Calvez, et al. 2017. “Genomic Characterization of Flavobacterium psychrophilum Serotypes and Development of a Multiplex PCR‐Based Serotyping Scheme.” Frontiers in Microbiology 8: 1752. https://doi.org/10.3389/fmicb.2017.01752.
  31. Romalde, J. L., C. Ravelo, S. López‐Romalde, R. Avendaño‐Herrera, B. Magariños, and A. E. Toranzo. 2005. “Vaccination Strategies to Prevent Emerging Diseases for Spanish Aquaculture.” In Progress in Fish Vaccinology. Developments in Biologicals, edited by P. J. Mydtlyng, vol. 121, 85–95. Karger.
  32. Saldarriaga‐Córdoba, M., R. Irgang, and R. Avendaño‐Herrera. 2021. “Comparison Between Genome Sequences of Chilean Tenacibaculum dicentrarchi Isolated From Red Conger Eel (Genypterus chilensis) and Atlantic Salmon (Salmo salar) Focusing on Bacterial Virulence Determinants.” Journal of Fish Diseases 44, no. 11: 1843–1860. https://doi.org/10.1111/jfd.13503.
  33. Samuel, G., and P. Reeves. 2003. “Biosynthesis of O‐Antigens: Genes and Pathways Involved in Nucleotide Sugar Precursor Synthesis and O‐Antigen Assembly.” Carbohydrate Research 338, no. 23: 2503–2519. https://doi.org/10.1016/j.carres.2003.07.009.
  34. SERNAPESCA. 2023. “Informe con Antecedentes Sanitarios de Agua Dulce y mar año 1° Semestre 2023.” https://www.sernapesca.cl/app/uploads/2023/12/Informe‐Sanitario‐1S‐2023‐Publicacion‐002.pdf.
  35. Småge, S. B., Ø. J. Brevik, H. Duesund, K. F. Ottem, K. Watanabe, and A. Nylund. 2016. “Tenacibaculum finnmarkense sp. nov., a Fish Pathogenic Bacterium of the Family Flavobacteriaceae Isolated From Atlantic Salmon.” Antonie van Leeuwenhoek 109, no. 2: 273–285. https://doi.org/10.1007/s10482‐015‐0630‐0.
  36. Soding, J., A. Biegert, and A. N. Lupas. 2005. “The HHpred Interactive Server for Protein Homology Detection and Structure Prediction.” Nucleic Acids Research 33, no. Web Server: W244–W248. https://doi.org/10.1093/nar/gki408.
  37. Sørensen, U. B., and J. L. Larsen. 1986. “Serotyping of Vibrio anguillarum.” Applied and Environmental Microbiology 51, no. 3: 593–597. https://doi.org/10.1128/aem.51.3.593‐597.1986.
  38. SUBPESCA. 2023. “Informe Sectorial de Pesca y Acuicultura.” Departamento de Análisis y Acuicultura. 20 páginas. https://www.subpesca.cl/portal/616/articles‐118967_documento.pdf.
  39. Tan, Y., and J. C. Kagan. 2014. “A Cross‐Disciplinary Perspective on the Innate Immune Responses to Bacterial Lipopolysaccharide.” Molecular Cell 54, no. 2: 212–223. https://doi.org/10.1016/j.molcel.2014.03.012.
  40. Taylor, V. L., J. F. J. Hoage, S. W. Thrane, S. M. Huszczynski, L. Jelsbak, and J. S. Lam. 2016. “A Bacteriophage‐Acquired O‐Antigen Polymerase (Wzyβ) From P. aeruginosa Serotype O16 Performs a Varied Mechanism Compared to Its Cognate Wzyα.” Frontiers in Microbiology 7: 393. https://doi.org/10.3389/fmicb.2016.00393.
  41. Vallenet, D., A. Calteau, M. Dubois, et al. 2019. “MicroScope: An Integrated Platform for the Annotation and Exploration of Microbial Gene Functions Through Genomic, Pangenomic and Metabolic Comparative Analysis.” Nucleic Acids Research 48, no. D1: D579–D589. https://doi.org/10.1093/nar/gkz926.
  42. Wilson, T. K., M. Douglas, and V. Dunn. 2019. “First Identification in Tasmania of Fish Pathogens Tenacibculum dicentrarchi and T. soleae and Multiplex PCR for These Organisms and T. maritimum.” Diseases of Aquatic Organisms 136, no. 3: 219–226. https://doi.org/10.3354/dao03407.
  43. Yu, N. Y., J. R. Wagner, M. R. Laird, et al. 2010. “PSORTb 3.0: Improved Protein Subcellular Localization Prediction With Refined Localization Subcategories and Predictive Capabilities for all Prokaryotes.” Bioinformatics 26, no. 13: 1608–1615. https://doi.org/10.1093/bioinformatics/btq249.

Grants

  1. /Agencia Nacional de Investigación y Desarrollo

Word Cloud

Created with Highcharts 10.0.0isolatesdicentrarchiChileanTO-AGCTypes1analysisO-antigengeneclusterincluding4fishTenacibaculumsalmonstudiesprovidedvaluablegenomediversitybiosynthesisgenestypestrainidentifiedmultiplexgenotypingfarmsType32NorwayCanadaemergedmajorpathogenfarmingearly2023causing329%AtlanticSalmosalarmortalitiesAlthoughrecentinsightsvirulencemechanismsgeneticbasedremainslargelyunexploredstudyconductedcomparativegenomic30whole-genomesequencedstrainssingleconsisting20involvedcomponentlipopolysaccharidelayerVariationsrevealedantigenicwithinspeciesallowingclassificationfourdistinctgroupsdesignatedBasedfindingsdevelopedPCR-basedschemesuccessfullyapplied25bacteriallesscommonnumberalsoinvestigatedwhethercorephylogenycorrelatedpubliclyavailablegenomesChileNotablyclusteredtwogroups:onecomprisingbelongingAnothergroupconsisteddiverseiePCRapproachtoolrapidreliabletypingfacilitatingepidemiologicalaidingselectionappropriatevaccinedevelopmenttenacibaculosisO-AntigenGeneClusterRevealsGenomicVariationMultiplexPCR-BasedGenotypingSchemeO‐antigenTenacibaculosisdiseasesmolecularsalmonidaquaculture

Similar Articles

Cited By

No available data.