A new insight into the fabrication of colloidal isotropic ZnO nanocrystals by an organometallic approach.

Anna Wojewódzka, Małgorzata Wolska-Pietkiewicz, Roman H Szczepanowski, Maria Jędrzejewska, Karolina Zelga, Janusz Lewiński
Author Information
  1. Anna Wojewódzka: Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland malgorzata.pietkiewicz@pw.edu.pl janusz.lewinski@pw.edu.pl. ORCID
  2. Małgorzata Wolska-Pietkiewicz: Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland malgorzata.pietkiewicz@pw.edu.pl janusz.lewinski@pw.edu.pl. ORCID
  3. Roman H Szczepanowski: International Institute of Molecular and Cell Biology Ks. Trojdena Street 4 02-109 Warsaw Poland.
  4. Maria Jędrzejewska: Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland malgorzata.pietkiewicz@pw.edu.pl janusz.lewinski@pw.edu.pl.
  5. Karolina Zelga: Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland malgorzata.pietkiewicz@pw.edu.pl janusz.lewinski@pw.edu.pl. ORCID
  6. Janusz Lewiński: Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland malgorzata.pietkiewicz@pw.edu.pl janusz.lewinski@pw.edu.pl. ORCID

Abstract

The study of factors controlling nanocrystal (NC) growth is essential for uncovering and understanding nanomaterial formation, which typically involves a complex sequence of precursor reactions, nucleation, and growth processes. Herein, as part of the continuous development of the self-supporting organometallic approach for the preparation of quantum-sized colloidal zinc oxide (ZnO) NCs, we selected a series of [EtZn(X)]-type carboxylate precursors, where X = methoxyacetate, 2-(2-methoxyethoxy)acetate, or 2-[2-(2-methoxyethoxy)ethoxy]acetate, as model self-supporting systems with varying carboxylate tail lengths. The controlled exposure of a [EtZn(X)]-type precursor solution to air afforded colloidal ZnO NCs with a narrow unimodal size distribution and coated with strongly anchored X-type ligands. Employing optical spectroscopy techniques, we investigate how the growth dynamics of NCs depend on the length of the carboxylate tail. Moreover, leveraging analytical ultracentrifugation (AUC), we meticulously examined the behavior of NCs in solution under centrifugal forces to gain valuable insights into their stability and aggregation tendencies. This study not only enhances understanding of the underlying 'living growth' of organometallic-derived nanostructures that leads to the formation of thermodynamically stable and monodispersed ZnO NCs but also significantly contributes to the ongoing development of more effective methods for synthesizing colloidal ZnO NCs, thereby advancing the field of materials science.

References

  1. ACS Nano. 2009 Feb 24;3(2):467-77 [PMID: 19236087]
  2. Nanoscale. 2017 Oct 12;9(39):14782-14786 [PMID: 28767107]
  3. J Am Chem Soc. 2003 Oct 22;125(42):12698-9 [PMID: 14558804]
  4. Chemistry. 2017 Sep 4;23(49):11856-11865 [PMID: 28657662]
  5. Inorg Chem. 2012 Jul 2;51(13):7410-4 [PMID: 22680608]
  6. Nanomaterials (Basel). 2021 May 28;11(6): [PMID: 34071534]
  7. J Phys Chem B. 1998 Apr 16;102(16):2854-2862 [PMID: 28207254]
  8. Commun Chem. 2021 Sep 20;4(1):133 [PMID: 36697595]
  9. Chemphyschem. 2006 Nov 13;7(11):2392-7 [PMID: 17051655]
  10. Chem Commun (Camb). 2009 Jan 8;(2):215-7 [PMID: 19099073]
  11. Langmuir. 2019 Sep 10;35(36):11702-11709 [PMID: 31403801]
  12. ACS Nano. 2016 Aug 23;10(8):7418-27 [PMID: 27459174]
  13. Nat Commun. 2016 Oct 13;7:13008 [PMID: 27734828]
  14. Dalton Trans. 2016 Nov 29;45(47):18813-18816 [PMID: 27805206]
  15. Biophys J. 2000 Mar;78(3):1606-19 [PMID: 10692345]
  16. ACS Appl Mater Interfaces. 2024 Jul 17;16(28):37308-37317 [PMID: 38973569]
  17. ACS Nano. 2021 Apr 27;15(4):6192-6210 [PMID: 33830732]
  18. Dalton Trans. 2017 Sep 26;46(37):12404-12407 [PMID: 28657622]
  19. J Am Chem Soc. 2024 Oct 9;146(40):27655-27667 [PMID: 39321384]
  20. Chemistry. 2017 Jun 12;23(33):7997-8005 [PMID: 28399333]
  21. Chem Commun (Camb). 2016 May 31;52(46):7340-3 [PMID: 27156855]
  22. J Am Chem Soc. 2015 Jul 1;137(25):7947-66 [PMID: 26020837]
  23. Dalton Trans. 2012 May 21;41(19):5934-8 [PMID: 22281551]
  24. Chemistry. 2015 Nov 16;21(47):16941-7 [PMID: 26427916]
  25. Nanoscale Adv. 2022 Mar 9;4(8):1868-1925 [PMID: 36133407]
  26. Anal Chem. 2021 Dec 7;93(48):15805-15815 [PMID: 34806364]
  27. Nanoscale Adv. 2021 Aug 30;3(21):6088-6099 [PMID: 36133935]
  28. Angew Chem Int Ed Engl. 2002 Apr 2;41(7):1188-91 [PMID: 12491255]
  29. Nanoscale Adv. 2021 Sep 14;3(23):6696-6703 [PMID: 36132654]
  30. Nanoscale. 2010 Oct;2(10):1849-69 [PMID: 20820642]
  31. Chemistry. 2018 Mar 15;24(16):4033-4042 [PMID: 29178547]
  32. Chem Commun (Camb). 2012 Jul 28;48(59):7362-4 [PMID: 22714053]
  33. Analyst. 2016 Dec 19;142(1):206-217 [PMID: 27934989]
  34. Chem Sci. 2015 May 1;6(5):3102-3108 [PMID: 28706684]
  35. Chem Commun (Camb). 2011 May 21;47(19):5467-9 [PMID: 21483925]
  36. Chem Rev. 2023 Jan 11;123(1):271-326 [PMID: 36563316]
  37. Angew Chem Int Ed Engl. 2008;47(3):573-6 [PMID: 18034439]
  38. Chem Rev. 2014 Aug 13;114(15):7610-30 [PMID: 25003956]
  39. J Am Chem Soc. 2007 Apr 11;129(14):4470-5 [PMID: 17373793]
  40. Small. 2024 Jul;20(28):e2309984 [PMID: 38497489]
  41. J Am Chem Soc. 2008 Dec 10;130(49):16601-10 [PMID: 19554730]
  42. Angew Chem Int Ed Engl. 2003 Nov 10;42(43):5321-4 [PMID: 14613165]
  43. Sci Rep. 2019 Dec 2;9(1):18071 [PMID: 31792318]
  44. Angew Chem Int Ed Engl. 2019 Nov 25;58(48):17163-17168 [PMID: 31482605]
  45. Methods Enzymol. 2015;562:109-33 [PMID: 26412649]

Word Cloud

Created with Highcharts 10.0.0NCsZnOcolloidalgrowthXcarboxylatestudyunderstandingformationprecursordevelopmentself-supportingorganometallicapproach[EtZn]-type2-methoxyethoxytailsolutionfactorscontrollingnanocrystalNCessentialuncoveringnanomaterialtypicallyinvolvescomplexsequencereactionsnucleationprocessesHereinpartcontinuouspreparationquantum-sizedzincoxideselectedseriesprecursors=methoxyacetate2-acetate2-[2-ethoxy]acetatemodelsystemsvaryinglengthscontrolledexposureairaffordednarrowunimodalsizedistributioncoatedstronglyanchoredX-typeligandsEmployingopticalspectroscopytechniquesinvestigatedynamicsdependlengthMoreoverleveraginganalyticalultracentrifugationAUCmeticulouslyexaminedbehaviorcentrifugalforcesgainvaluableinsightsstabilityaggregationtendenciesenhancesunderlying'livinggrowth'organometallic-derivednanostructuresleadsthermodynamicallystablemonodispersedalsosignificantlycontributesongoingeffectivemethodssynthesizingtherebyadvancingfieldmaterialssciencenewinsightfabricationisotropicnanocrystals

Similar Articles

Cited By

No available data.