Diterpenoid Phytoalexins Shape Rice Root Microbiomes and Their Associations With Root Parasitic Nematodes.

Enoch Narh Kudjordjie, Willem Desmedt, Tina Kyndt, Mogens Nicolaisen, Reuben J Peters, Mette Vesterg��rd
Author Information
  1. Enoch Narh Kudjordjie: Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark. ORCID
  2. Willem Desmedt: VIB Center for Plant Systems Biology, Ghent, Belgium. ORCID
  3. Tina Kyndt: Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium. ORCID
  4. Mogens Nicolaisen: Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark. ORCID
  5. Reuben J Peters: Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, USA. ORCID
  6. Mette Vesterg��rd: Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark. ORCID

Abstract

Rice synthesises diterpenoid phytoalexins (DPs) which are known to operate in defence against foliar microbial pathogens and the root-knot nematode Meloidogyne graminicola. Here, we examined the role of DPs in shaping rice-associated root microbiomes in nematode-infested field soil. Further, we assessed how DPs affect interactions between the root microbiomes and M. graminicola. We used 16S and ITS2 rRNA gene amplicon analysis to characterise the root- and rhizosphere-associated microbiomes of DP knock-out rice mutants and their wild-type parental line, at an early (17���days) and late (28���days) stage of plant development in field soil. Disruption of DP synthesis resulted in distinct changes in the composition and structure of microbial communities both relative to the parental/wild-type line but also between individual mutants, indicating specificity in DP-microbe interactions. Moreover, the abundance of nematode-suppressive microbial taxa, including Streptomyces, Stenotrophomonas and Enterobacter was negatively correlated with that of Meloidogyne. Differential enrichment of microbial taxa in the roots of rice DP knock-out mutants versus wild-type suggests that DPs modulate specific taxa in the rice root microbiome. These findings indicate a role for DPs in plant-microbiome assembly and nematode interactions, further underscoring the potential of leveraging phytoalexins for sustainable management of crop diseases.

Keywords

References

  1. FEMS Microbiol Ecol. 2012 Dec;82(3):666-77 [PMID: 22738186]
  2. Phytochemistry. 2020 Apr;172:112289 [PMID: 32036187]
  3. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  4. Plants (Basel). 2023 Jan 05;12(2): [PMID: 36678973]
  5. Plant Physiol. 2004 Dec;136(4):4228-36 [PMID: 15542489]
  6. Front Microbiol. 2020 Feb 28;11:313 [PMID: 32184773]
  7. Microb Ecol. 2001 Apr;41(3):252-263 [PMID: 11391463]
  8. Physiol Plant. 2014 Jan;150(1):55-62 [PMID: 23621683]
  9. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  10. Phytochemistry. 2023 Jul;211:113708 [PMID: 37149120]
  11. Microbiome. 2019 Apr 11;7(1):59 [PMID: 30975184]
  12. Phytopathology. 2018 Jan;108(1):52-59 [PMID: 28945522]
  13. Commun Biol. 2023 Sep 7;6(1):917 [PMID: 37679469]
  14. Front Microbiol. 2022 Jun 10;13:915546 [PMID: 35756018]
  15. Biosci Biotechnol Biochem. 2008 Feb;72(2):562-7 [PMID: 18256463]
  16. Appl Environ Microbiol. 2013 Sep;79(17):5291-301 [PMID: 23811512]
  17. ISME J. 2022 Sep;16(9):2230-2241 [PMID: 35760884]
  18. New Phytol. 2022 Aug;235(3):1231-1245 [PMID: 35460590]
  19. Nat Commun. 2020 Jul 14;11(1):3514 [PMID: 32665548]
  20. Plant Cell. 2018 May;30(5):1119-1131 [PMID: 29691314]
  21. Sci Rep. 2021 Jan 11;11(1):333 [PMID: 33431904]
  22. Phytochemistry. 2020 Dec;180:112518 [PMID: 32950772]
  23. J Agric Food Chem. 2017 Apr 5;65(13):2643-2644 [PMID: 28345913]
  24. New Phytol. 2012 Feb;193(3):570-575 [PMID: 22150231]
  25. Front Microbiol. 2016 May 13;7:650 [PMID: 27242686]
  26. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  27. Plant J. 2014 Aug;79(4):659-78 [PMID: 24450747]
  28. Physiol Mol Biol Plants. 2022 Feb;28(2):485-504 [PMID: 35400890]
  29. Front Microbiol. 2022 May 06;13:870519 [PMID: 35602027]
  30. J Exp Bot. 2021 May 4;72(10):3835-3845 [PMID: 33712814]
  31. Front Plant Sci. 2023 Jul 19;14:1216031 [PMID: 37538060]
  32. mBio. 2015 Mar 24;6(2): [PMID: 25805735]
  33. New Phytol. 2010 Apr;186(2):281-5 [PMID: 20409185]
  34. PeerJ. 2016 Oct 18;4:e2584 [PMID: 27781170]
  35. Cell. 2006 Feb 24;124(4):803-14 [PMID: 16497589]
  36. Plant Physiol. 2004 Apr;134(4):1642-53 [PMID: 15075394]
  37. Biosci Biotechnol Biochem. 2013;77(6):1141-8 [PMID: 23748776]
  38. J Microbiol Biotechnol. 2018 Jun 28;28(6):968-975 [PMID: 29642290]
  39. Plant J. 2004 Sep;39(6):886-93 [PMID: 15341631]
  40. New Phytol. 2021 Apr;230(2):698-709 [PMID: 33458815]
  41. Plant J. 2004 Aug;39(3):309-18 [PMID: 15255861]
  42. PLoS One. 2013;8(2):e56329 [PMID: 23457551]
  43. Nature. 2001 Jun 14;411(6839):843-7 [PMID: 11459067]
  44. Science. 2019 May 10;364(6440): [PMID: 31073042]
  45. Nat Methods. 2010 May;7(5):335-6 [PMID: 20383131]
  46. Pest Manag Sci. 2020 Sep;76(9):3127-3138 [PMID: 32309906]
  47. Plant Cell. 1994 Sep;6(9):1191-1192 [PMID: 12244269]
  48. Front Microbiol. 2020 May 25;11:992 [PMID: 32523567]

Grants

  1. AUFF-F-2018-7-7/Aarhus Universitet
  2. 2020-67013-32557/National Institute of Food and Agriculture

MeSH Term

Animals
Oryza
Plant Roots
Microbiota
Tylenchoidea
Phytoalexins
Plant Diseases
Sesquiterpenes
Bacteria
Diterpenes
Soil Microbiology
Rhizosphere
RNA, Ribosomal, 16S

Chemicals

Phytoalexins
Sesquiterpenes
Diterpenes
RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0DPsmicrobialricemutantsMeloidogynegraminicolarootmicrobiomesinteractionsDPtaxaRicediterpenoidphytoalexinsnematoderolefieldsoilknock-outwild-typelinemicrobiomeRootsynthesisesknownoperatedefencefoliarpathogensroot-knotexaminedshapingrice-associatednematode-infestedassessedaffectMused16SITS2rRNAgeneampliconanalysischaracteriseroot-rhizosphere-associatedparentalearly17���dayslate28���daysstageplantdevelopmentDisruptionsynthesisresulteddistinctchangescompositionstructurecommunitiesrelativeparental/wild-typealsoindividualindicatingspecificityDP-microbeMoreoverabundancenematode-suppressiveincludingStreptomycesStenotrophomonasEnterobacternegativelycorrelatedDifferentialenrichmentrootsversussuggestsmodulatespecificfindingsindicateplant-microbiomeassemblyunderscoringpotentialleveragingsustainablemanagementcropdiseasesDiterpenoidPhytoalexinsShapeMicrobiomesAssociationsParasiticNematodesmutationrhizosphere/rootroot���knotnematodessecondarymetabolites

Similar Articles

Cited By