Tracking Different States of Spiked Environmental DNA Using Multiplex Digital PCR Assays.

Julia Z��hrer, Judith Ascher-Jenull, Andreas O Wagner
Author Information
  1. Julia Z��hrer: Department of Microbiology, Universit��t Innsbruck, Innsbruck, Austria. ORCID
  2. Judith Ascher-Jenull: Department of Experimental Architecture, Integrative Design Extremes, Universit��t Innsbruck, Innsbruck, Austria. ORCID
  3. Andreas O Wagner: Department of Microbiology, Universit��t Innsbruck, Innsbruck, Austria. ORCID

Abstract

The study of microbial communities based on the total environmental DNA (eDNA) is influenced by the presence of different eDNA states, i.e., intracellular (iDNA) and extracellular DNA (exDNA), and the choice of the DNA extraction method. Although the use of spike-and-recovery controls facilitates the diagnosis of such issues, appropriate experimental setups simultaneously accounting for the different eDNA states and their bacterial origins are missing. Here, we used two single-gene deletion mutants of both Escherichia coli and Bacillus subtilis to trace exDNA and iDNA spike-ins of each selected model organism within environmental samples. Unique primer/probe sets were developed for each strain, allowing their absolute quantification using multiplex digital PCR assays. The proposed spike-and-recovery controls were successfully applied to various environments including soil, sediment, sludge and compost. While the percent recovery of spiked iDNA differed significantly between E. coli and B. subtilis, results were similar for both model organisms in the case of spiked exDNA, emphasising that the fate of DNA molecules in the environment is similar irrespective of their bacterial origin. Hence, future studies may benefit from the proposed approach to better understand methodological ambiguities related to the eDNA extraction in general as well as the separation of the different eDNA states.

Keywords

References

  1. Mol Ecol. 2012 Apr;21(8):1789-93 [PMID: 22486819]
  2. J Microbiol Methods. 2014 Sep;104:36-42 [PMID: 24955890]
  3. Water Res. 2022 Jun 15;217:118363 [PMID: 35390554]
  4. Appl Microbiol Biotechnol. 2018 Mar;102(6):2885-2898 [PMID: 29423636]
  5. Clin Chem. 2020 Aug 1;66(8):1012-1029 [PMID: 32746458]
  6. Microbiome. 2017 Aug 16;5(1):86 [PMID: 28810907]
  7. Antonie Van Leeuwenhoek. 2009 Nov;96(4):653-7 [PMID: 19533410]
  8. Biotechnol Biofuels. 2021 Jan 20;14(1):27 [PMID: 33472684]
  9. ACS Omega. 2021 Jan 04;6(2):1361-1369 [PMID: 33490795]
  10. Environ Biosafety Res. 2007 Jan-Jun;6(1-2):37-53 [PMID: 17961479]
  11. Mol Syst Biol. 2006;2:2006.0008 [PMID: 16738554]
  12. Front Microbiol. 2015 May 19;6:476 [PMID: 26042110]
  13. Appl Environ Microbiol. 1991 Apr;57(4):1057-61 [PMID: 1647748]
  14. Appl Environ Microbiol. 2004 Jul;70(7):4384-6 [PMID: 15240325]
  15. Microbiologyopen. 2020 Mar;9(3):e977 [PMID: 31927795]
  16. Appl Environ Microbiol. 2005 Jan;71(1):46-50 [PMID: 15640168]
  17. Appl Microbiol Biotechnol. 2018 Aug;102(15):6343-6356 [PMID: 29858957]
  18. Front Microbiol. 2021 Apr 27;12:640386 [PMID: 33986733]
  19. Water Res. 2016 Apr 1;92:188-98 [PMID: 26854607]
  20. ISME J. 2011 Feb;5(2):173-83 [PMID: 20574458]
  21. Microb Cell Fact. 2016 Dec 19;15(1):211 [PMID: 27993152]
  22. Nucleic Acids Res. 2012 Aug;40(15):e115 [PMID: 22730293]
  23. Nucleic Acids Res. 2024 Jan 5;52(D1):D134-D137 [PMID: 37889039]
  24. Science. 2005 Sep 30;309(5744):2179 [PMID: 16195451]
  25. Water Res. 2009 Nov;43(19):4820-7 [PMID: 19589555]
  26. Nat Microbiol. 2016 Dec 19;2:16242 [PMID: 27991881]
  27. mBio. 2018 Jun 19;9(3): [PMID: 29921664]
  28. Trends Microbiol. 2008 Jun;16(6):269-75 [PMID: 18467096]
  29. BMC Bioinformatics. 2012 Jun 18;13:134 [PMID: 22708584]
  30. 3 Biotech. 2017 Dec;7(6):375 [PMID: 29071172]
  31. J Appl Microbiol. 2017 Sep;123(3):570-581 [PMID: 28383815]
  32. Cell Syst. 2017 Mar 22;4(3):291-305.e7 [PMID: 28189581]
  33. Nucleic Acids Res. 2017 Feb 28;45(4):e23 [PMID: 27980100]
  34. PLoS One. 2015 Jul 16;10(7):e0132783 [PMID: 26182345]
  35. Microbiologyopen. 2014 Aug;3(4):437-45 [PMID: 24838631]
  36. J Microbiol Methods. 2000 Nov;42(3):225-32 [PMID: 11044566]
  37. Environ Sci Technol. 1988 Aug 1;22(8):982-4 [PMID: 22195724]
  38. J Ind Microbiol Biotechnol. 2013 Nov;40(11):1251-61 [PMID: 23958912]
  39. Microbiome. 2018 Jun 19;6(1):110 [PMID: 29921326]
  40. Sci Rep. 2019 Apr 4;9(1):5618 [PMID: 30948770]
  41. Nat Commun. 2018 Aug 6;9(1):3096 [PMID: 30082706]
  42. Appl Soil Ecol. 2015 Sep;93:56-64 [PMID: 26339125]
  43. Appl Microbiol Biotechnol. 2013 Oct;97(20):9165-73 [PMID: 23989919]
  44. Microbiol Spectr. 2023 Dec 12;11(6):e0021023 [PMID: 37966217]
  45. Front Cell Infect Microbiol. 2023 Jan 11;12:1110684 [PMID: 36710974]
  46. Appl Environ Microbiol. 1994 Feb;60(2):393-6 [PMID: 16349168]
  47. Appl Environ Microbiol. 2011 Apr;77(7):2531-3 [PMID: 21317266]
  48. J Basic Microbiol. 2024 Jun;64(6):e2300614 [PMID: 38507723]
  49. Mol Ecol. 2020 Nov;29(22):4258-4264 [PMID: 32966665]
  50. Lett Appl Microbiol. 2013 Mar;56(3):222-8 [PMID: 23252687]
  51. Microbiome. 2016 Jun 21;4(1):28 [PMID: 27329048]
  52. Mol Ecol Resour. 2021 Jan;21(1):30-43 [PMID: 32889760]
  53. Front Microbiol. 2020 Aug 05;11:1894 [PMID: 32849470]
  54. Int J Food Microbiol. 2007 Nov 30;120(1-2):110-9 [PMID: 17604864]
  55. Mar Genomics. 2015 Dec;24 Pt 3:185-96 [PMID: 26452301]

Grants

  1. P33838/Austrian Science Fund

MeSH Term

Escherichia coli
Bacillus subtilis
DNA, Environmental
DNA, Bacterial
Multiplex Polymerase Chain Reaction
Soil Microbiology

Chemicals

DNA, Environmental
DNA, Bacterial

Word Cloud

Created with Highcharts 10.0.0DNAeDNAdifferentstatesiDNAexDNAcontrolscolisubtilisenvironmentalintracellularextracellularextractionspike-and-recoverybacterialEscherichiaBacillusmodelPCRproposedspikedsimilarstudymicrobialcommunitiesbasedtotalinfluencedpresenceiechoicemethodAlthoughusefacilitatesdiagnosisissuesappropriateexperimentalsetupssimultaneouslyaccountingoriginsmissingusedtwosingle-genedeletionmutantstracespike-insselectedorganismwithinsamplesUniqueprimer/probesetsdevelopedstrainallowingabsolutequantificationusingmultiplexdigitalassayssuccessfullyappliedvariousenvironmentsincludingsoilsedimentsludgecompostpercentrecoverydifferedsignificantlyEBresultsorganismscaseemphasisingfatemoleculesenvironmentirrespectiveoriginHencefuturestudiesmaybenefitapproachbetterunderstandmethodologicalambiguitiesrelatedgeneralwellseparationTrackingDifferentStatesSpikedEnvironmentalUsingMultiplexDigitalAssaysspike���and���recovery

Similar Articles

Cited By