Flowering Plant Microbiomes and Network Interactions Across an Urban Gradient.

Katherine D Chau, Makaylee K Crone, Phuong N Nguyen, Sandra M Rehan
Author Information
  1. Katherine D Chau: Department of Biology, York University, Toronto, Canada. ORCID
  2. Makaylee K Crone: Department of Biology, York University, Toronto, Canada. ORCID
  3. Phuong N Nguyen: Department of Biology, York University, Toronto, Canada. ORCID
  4. Sandra M Rehan: Department of Biology, York University, Toronto, Canada. ORCID

Abstract

We used flowers to explore how ephemeral anthosphere microbiomes differ among flowering plant species and along an urban gradient. Here, we sequenced 16S rRNA for bacteria, ITS1 for fungi and rbcL for plant DNA from 10 different plant species sampled to characterise anthosphere microbiomes along an urban gradient and identify important network interactions. Bacterial and fungal flower microbiomes significantly differed in diversity across plant species, especially among Asteraceae and Fabaceae. Across all analyses, four taxa, the bacteria Pantoea and Rosenbergiella and the fungi Alternaria and Cladosporium were highly prevalent and contributed to the majority of microbiome composition differences observed between plant species. These four taxa harbour strains or species that may be either pathogenic or beneficial to plants. Across a land use gradient, the plant community bacterial and fungal microbiome was stable and consistent. Flower-plant networks confirmed all focal flower families in abundance on each sampled flower, with the addition of Paulowniaceae, suggesting that pollinators visiting the focal flowers also visit this plant family. Our findings reveal that anthosphere microbiomes are diverse at the plant community level and encouragingly remain robust against urbanisation.

Keywords

References

  1. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  2. Microb Ecol. 2019 Feb;77(2):513-522 [PMID: 30069710]
  3. Res Microbiol. 2018 May - Jun;169(4-5):254-261 [PMID: 29800679]
  4. Microorganisms. 2023 Jan 17;11(2): [PMID: 36838198]
  5. Food Microbiol. 2023 Aug;113:104260 [PMID: 37098420]
  6. Gut Microbes. 2023 Dec;15(2):2244139 [PMID: 37622724]
  7. Front Microbiol. 2022 Apr 29;13:843389 [PMID: 35572673]
  8. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  9. Sci Rep. 2018 Mar 26;8(1):5195 [PMID: 29581521]
  10. BMC Ecol. 2016 Mar 30;16:18 [PMID: 27030361]
  11. Glob Chang Biol. 2023 Aug;29(15):4193-4211 [PMID: 37173859]
  12. Curr Opin Insect Sci. 2015 Aug;10:133-141 [PMID: 29588000]
  13. Insects. 2021 Jul 31;12(8): [PMID: 34442255]
  14. Mol Ecol Resour. 2019 Nov;19(6):1565-1577 [PMID: 31479575]
  15. Ann Bot. 2008 May;101(7):1035-47 [PMID: 18344545]
  16. Sci Total Environ. 2023 Nov 15;899:166437 [PMID: 37604369]
  17. Mol Ecol. 2016 May;25(10):2302-11 [PMID: 26945527]
  18. FEMS Microbiol Ecol. 2018 Aug 1;94(8): [PMID: 29878113]
  19. J Fungi (Basel). 2021 Sep 18;7(9): [PMID: 34575812]
  20. Sci Rep. 2014 Oct 22;4:6727 [PMID: 25335793]
  21. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  22. New Phytol. 2019 Nov;224(3):1012-1020 [PMID: 31442301]
  23. F1000Res. 2016 Jun 27;5:1519 [PMID: 27853510]
  24. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  25. Phytochem Rev. 2015;14(5):799-833 [PMID: 32214918]
  26. Mycobiology. 2015 Sep;43(3):354-9 [PMID: 26539056]
  27. Curr Opin Insect Sci. 2021 Apr;44:8-15 [PMID: 32992041]
  28. J Agric Food Chem. 2022 Aug 17;70(32):9819-9825 [PMID: 35917340]
  29. Microbiome. 2018 Dec 17;6(1):226 [PMID: 30558668]
  30. FEMS Microbiol Ecol. 2023 Nov 13;99(12): [PMID: 38037395]
  31. PeerJ. 2024 Jan 31;12:e16567 [PMID: 38313030]
  32. Front Microbiol. 2022 Nov 17;13:992660 [PMID: 36466654]
  33. Environ Microbiol. 2020 Apr;22(4):1341-1355 [PMID: 32077227]
  34. Proc Biol Sci. 2007 Feb 7;274(1608):303-13 [PMID: 17164193]
  35. Plant Dis. 2020 Nov 24;: [PMID: 33231524]
  36. Nucleic Acids Res. 2024 Jan 5;52(D1):D791-D797 [PMID: 37953409]
  37. Plant Dis. 2022 Feb;106(2):432-438 [PMID: 34455807]
  38. Environ Microbiome. 2024 Sep 2;19(1):65 [PMID: 39223675]
  39. Curr Biol. 2018 Oct 8;28(19):3158-3164.e4 [PMID: 30270187]
  40. Environ Microbiol. 2022 Dec;24(12):5654-5665 [PMID: 36102191]
  41. Environ Pollut. 2020 Mar;258:113708 [PMID: 31818616]
  42. Plant Dis. 2019 Jul;103(7):1577-1583 [PMID: 31082321]
  43. Front Microbiol. 2023 Sep 28;14:1229294 [PMID: 37840714]
  44. Nat Methods. 2013 Dec;10(12):1200-2 [PMID: 24076764]
  45. PLoS One. 2015 Nov 04;10(11):e0142031 [PMID: 26536606]
  46. PLoS One. 2017 Jan 31;12(1):e0170782 [PMID: 28141830]
  47. Microorganisms. 2021 Jul 09;9(7): [PMID: 34361905]
  48. Fungal Biol. 2021 Jan;125(1):49-61 [PMID: 33317776]
  49. Plant Pathol J. 2021 Aug;37(4):404-412 [PMID: 34365752]
  50. mBio. 2013 Feb 26;4(2): [PMID: 23443006]
  51. PLoS One. 2019 Dec 2;14(12):e0225852 [PMID: 31790482]
  52. PeerJ. 2020 Apr 06;8:e8822 [PMID: 32292647]
  53. PLoS Comput Biol. 2021 Nov 8;17(11):e1009581 [PMID: 34748542]
  54. Insects. 2020 Oct 12;11(10): [PMID: 33053745]
  55. Med Mycol. 2014 Feb;52(2):202-10 [PMID: 24576997]
  56. New Phytol. 2018 Nov;220(3):750-759 [PMID: 28960308]
  57. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]
  58. Biol Lett. 2019 Jul 26;15(7):20190132 [PMID: 31311487]

Grants

  1. /Weston Family Foundation Microbiome Initiative
  2. /Ontario Graduate Scholarship
  3. NFRFT-2020-00073/Natural Sciences and Engineering Research Council of Canada
  4. /Mitacs Elevate Fellowship

MeSH Term

Microbiota
Bacteria
Flowers
Fungi
RNA, Ribosomal, 16S
Magnoliopsida
Cities
Biodiversity
Phylogeny

Chemicals

RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0plantspeciesanthospheremicrobiomesurbangradientflowerAcrossmicrobiomeflowersamongalongbacteriafungisampledfungalfourtaxalandusecommunitynetworksfocalusedexploreephemeraldifferfloweringsequenced16SrRNAITS1rbcLDNA10differentcharacteriseidentifyimportantnetworkinteractionsBacterialsignificantlydiffereddiversityacrossespeciallyAsteraceaeFabaceaeanalysesPantoeaRosenbergiellaAlternariaCladosporiumhighlyprevalentcontributedmajoritycompositiondifferencesobservedharbourstrainsmayeitherpathogenicbeneficialplantsbacterialstableconsistentFlower-plantconfirmedfamiliesabundanceadditionPaulowniaceaesuggestingpollinatorsvisitingalsovisitfamilyfindingsrevealdiverselevelencouraginglyremainrobusturbanisationFloweringPlantMicrobiomesNetworkInteractionsUrbanGradientbipartiteco���occurrencefloralhealthpollinator

Similar Articles

Cited By