Quantitative Analysis of 3D Anatomy to Inform Planning of Ductal Arteriosus Stenting.

Mudit Gupta, Silvani Amin, Alana Cianciulli, Yuval Barak-Corren, Csaba Pinter, Hannah Dewey, Andras Lasso, William Russell, Stephanie Colello, Ari J Gartenberg, Vlad Obsekov, Trevor Williams, Elizabeth Silvestro, Michael L O'Byrne, Andrew C Glatz, Matthew A Jolley
Author Information
  1. Mudit Gupta: Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA. ORCID
  2. Silvani Amin: Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
  3. Alana Cianciulli: Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
  4. Yuval Barak-Corren: Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
  5. Csaba Pinter: EBATINCA S.L., Las Palmas, Gran Canaria, Spain.
  6. Hannah Dewey: Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA. ORCID
  7. Andras Lasso: Laboratory for Percutaneous Surgery, School of Computing, Queen's University, Kingston, Canada.
  8. William Russell: Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
  9. Stephanie Colello: Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
  10. Ari J Gartenberg: Division of Pediatric Cardiology, Akron Children's Hospital, Akron, Ohio, USA. ORCID
  11. Vlad Obsekov: Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
  12. Trevor Williams: Division of Cardiology, University of Colorado School of Medicine and Children's Hospital of Colorado, Aurora, Colorado, USA.
  13. Elizabeth Silvestro: Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
  14. Michael L O'Byrne: Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA. ORCID
  15. Andrew C Glatz: Division of Cardiology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA.
  16. Matthew A Jolley: Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA. ORCID

Abstract

BACKGROUND: Ductus arteriosus stenting (DAS) is used to palliate infants with ductal-dependent pulmonary blood flow (DD-PBF), however patent ductus arteriosus (PDA) anatomy can be complex and heterogenous.
AIMS: We developed custom, open-source software to model and quantify PDA anatomy.
METHODS: We retrospectively identified 33 neonates with DD-PBF with a CTA before DAS. A novel custom workflow was implemented in 3D Slicer and SlicerHeart to semi-automatically extract centerlines of the course of the PDA and surrounding vessels. 3D ductal length, diameter, curvature and tortuosity were automatically calculated (3D automatic) and compared to manually adjusted 3D measurements (3D semi-automatic), and manual measurements of PDA dimensions in 2D projectional angiograms before and after stent angioplasty.
RESULTS: Ductal anatomy was successfully modeled and quantified in all subjects. 3D automatic and semi-automatic measurements of straight-line aortic to pulmonary artery length were not significantly different than 2D measurements. Semi-automatic 3D measurements were similar to 2D measurements of the total length. Minimum and maximum ductal diameters were not significantly different by 3D automatic and 2D measurements, however semi-automatic 3D diameters were significantly larger. Inter-reader reliability of ductal length and diameter was higher with manual adjustment of 3D centerlines compared to standard measurement of 2D angiograms. These differences were consistent across PGE doses between CTA and DAS.
CONCLUSIONS: Automatic PDA modeling is feasible and efficient, enabling reproducible quantification of ductal anatomy for procedural planning of DAS in patients with DD-PBF. Further development is needed as well as investigation of whether 3D modeling-derived measurements influence procedural duration or outcome.

Keywords

References

  1. A. C. Glatz, C. J. Petit, B. H. Goldstein, et al., ���Comparison Between Patent Ductus Arteriosus Stent and Modified Blalock���Taussig Shunt as Palliation for Infants With Ductal���Dependent Pulmonary Blood Flow: Insights From the Congenital Catheterization Research Collaborative,��� Circulation 137, no. 6 (2018): 589���601, https://doi.org/10.1161/CIRCULATIONAHA.117.029987.
  2. D. M. Boucek, A. M. Qureshi, B. H. Goldstein, C. J. Petit, and A. C. Glatz, ���Blalock���Taussig Shunt Versus Patent Ductus Arteriosus Stent As First Palliation for Ductal���Dependent Pulmonary Circulation Lesions: A Review of the Literature,��� Congenital Heart Disease 14, no. 1 (2019): 105���109, https://doi.org/10.1111/chd.12707.
  3. H. Bauser���Heaton, K. Price, R. Weber, and H. El���Said, ���Stenting of the Patent Ductus Arteriosus: A Meta���Analysis and Literature Review,��� Journal of the Society for Cardiovascular Angiography & Interventions 1, no. 6 (2022): 100392, https://doi.org/10.1016/j.jscai.2022.100392.
  4. J. R. Bentham, N. K. Zava, W. J. Harrison, et al., ���Duct Stenting Versus Modified Blalock���Taussig Shunt in Neonates With Duct���Dependent Pulmonary Blood Flow: Associations With Clinical Outcomes in a Multicenter National Study,��� Circulation 137, no. 6 (2018): 581���588, https://doi.org/10.1161/CIRCULATIONAHA.117.028972.
  5. B. A. Lemley, L. Wu, A. L. Roberts, et al., ���Trends in Ductus Arteriosus Stent Versus Blalock���Taussig���Thomas Shunt Use and Comparison of Cost, Length of Stay, and Short���Term Outcomes in Neonates With Ductal���Dependent Pulmonary Blood Flow: An Observational Study Using the Pediatric Health Information Systems Database,��� Journal of the American Heart Association 12, no. 23 (2023): e030575, https://doi.org/10.1161/JAHA.123.030575.
  6. K. Ratnayaka, S. J. Nageotte, J. W. Moore, et al., ���Patent Ductus Arteriosus Stenting for All Ductal���Dependent Cyanotic Infants: Waning Use of Blalock���Taussig Shunts,��� Circulation: Cardiovascular Interventions 14, no. 3 (2021): e009520, https://doi.org/10.1161/CIRCINTERVENTIONS.120.009520.
  7. J. L. Gibbs, M. T. Rothman, M. R. Rees, J. M. Parsons, M. E. Blackburn, and C. E. Ruiz, ���Stenting of the Arterial Duct: A New Approach to Palliation for Pulmonary Atresia,��� Heart 67, no. 3 (1992): 240���245, https://doi.org/10.1136/hrt.67.3.240.
  8. A. M. Qureshi, B. H. Goldstein, A. C. Glatz, et al., ���Classification Scheme for Ductal Morphology In Cyanotic Patients With Ductal Dependent Pulmonary Blood Flow and Association With Outcomes of Patent Ductus Arteriosus Stenting,��� Catheterization and Cardiovascular Interventions 93, no. 5 (2019): 933���943, https://doi.org/10.1002/ccd.28125.
  9. S. P. Jadhav, V. Aggarwal, P. M. Masand, E. Diaz, W. Zhang, and A. M. Qureshi, ���Correlation of Ductus Arteriosus Length and Morphology Between Computed Tomographic Angiography and Catheter Angiography and Their Relation to Ductal Stent Length,��� Pediatric Radiology 50, no. 6 (2020): 800���809, https://doi.org/10.1007/s00247-020-04624-1.
  10. R. C. Chamberlain, J. E. Ezekian, G. M. Sturgeon, P. C. A. Barker, K. D. Hill, and G. A. Fleming, ���Preprocedural Three���Dimensional Planning Aids In Transcatheter Ductal Stent Placement: A Single���Center Experience,��� Catheterization and Cardiovascular Interventions 95, no. 6 (2020): 1141���1148, https://doi.org/10.1002/ccd.28669.
  11. A. Fedorov, R. Beichel, J. Kalpathy���Cramer, et al., ���3D Slicer as an Image Computing Platform for the Quantitative Imaging Network,��� Magnetic Resonance Imaging 30, no. 9 (2012): 1323���1341, https://doi.org/10.1016/j.mri.2012.05.001.
  12. A. Lasso, C. Herz, H. Nam, et al., ���Slicerheart: An Open���Source Computing Platform for Cardiac Image Analysis and Modeling,��� Frontiers in Cardiovascular Medicine 9 (2022): 886549, https://doi.org/10.3389/fcvm.2022.886549.
  13. M. Piccinelli, A. Veneziani, D. A. Steinman, A. Remuzzi, and L. Antiga, ���A Framework for Geometric Analysis of Vascular Structures: Application to Cerebral Aneurysms,��� IEEE Transactions on Medical Imaging 28, no. 8 (2009): 1141���1155, https://doi.org/10.1109/TMI.2009.2021652.
  14. M. A. Jolley, A. Lasso, H. H. Nam, et al., ���Toward Predictive Modeling of Catheter���Based Pulmonary Valve Replacement Into Native Right Ventricular Outflow Tracts,��� Catheterization and Cardiovascular Interventions 93, no. 3 (2019): E143���E152, https://doi.org/10.1002/ccd.27962.
  15. E. Rosenthal, S. A. Qureshi, A. H. Tabatabaie, et al., ���Medium���Term Results of Experimental Stent Implantation Into the Ductus Arteriosus,��� American Heart Journal 132, no. 3 (1996): 657���663, https://doi.org/10.1016/s0002-8703(96)90252-5.
  16. M. Alwi, K. K. Choo, H. A. Latiff, G. Kandavello, H. Samion, and M. D. Mulyadi, ���Initial Results and Medium���Term Follow���Up of Stent Implantation of Patent Ductus Arteriosus In Duct���Dependent Pulmonary Circulation,��� Journal of the American College of Cardiology 44, no. 2 (2004): 438���445, https://doi.org/10.1016/j.jacc.2004.03.066.
  17. I. Michel���Behnke, H. Akintuerk, J. Thul, J. Bauer, K. J. Hagel, and D. Schranz, ���Stent Implantation In the Ductus Arteriosus for Pulmonary Blood Supply In Congenital Heart Disease,��� Catheterization and Cardiovascular Interventions 61, no. 2 (2004): 242���252, https://doi.org/10.1002/ccd.10766.
  18. G. Santoro, G. Gaio, L. Giugno, et al., ���Ten���Years, Single���Center Experience With Arterial Duct Stenting In Duct���Dependent Pulmonary Circulation: Early Results, Learning���Curve Changes, and Mid���Term Outcome,��� Catheterization and Cardiovascular Interventions 86, no. 2 (2015): 249���257, https://doi.org/10.1002/ccd.25949.
  19. V. Aggarwal, C. J. Petit, A. C. Glatz, B. H. Goldstein, and A. M. Qureshi, ���Stenting of the Ductus Arteriosus for Ductal���Dependent Pulmonary Blood Flow���Current Techniques and Procedural Considerations,��� Congenital Heart Disease 14, no. 1 (2019): 110���115, https://doi.org/10.1111/chd.12709.
  20. M. A. Onalan, E. Odemis, M. Saygi, et al., ���Early and Midterm Results of Ductal Stent Implantation In Neonates With Ductal���Dependent Pulmonary Circulation: a Single���Centre Experience,��� Cardiology in the Young 30, no. 12 (2020): 1772���1782, https://doi.org/10.1017/S104795112000267X.
  21. S. Shahanavaz, A. M. Qureshi, C. J. Petit, et al., ���Factors Influencing Reintervention Following Ductal Artery Stent Implantation for Ductal���Dependent Pulmonary Blood Flow: Results From the Congenital Cardiac Research Collaborative,��� Circulation: Cardiovascular Interventions 14, no. 12 (2021): e010086, https://doi.org/10.1161/CIRCINTERVENTIONS.120.010086.
  22. K. Price, J. R. Ryan, and H. El���Said, ���Stenting of the Patent Ductus Arteriosus,��� Interventional Cardiology Clinics 13, no. 3 (2024): 421���430, https://doi.org/10.1016/j.iccl.2024.02.002.
  23. C. P. Cheng, J. Bondesson, S. Hegde, M. T. Acuero, and H. G. El���Said, ���Impact of Stenting on PDA Length, Curvature, and Pulsatile Deformations Based on CT Assessment,��� Journal of the Society for Cardiovascular Angiography & Interventions 2, no. 6 (2023): 101134, https://doi.org/10.1016/j.jscai.2023.101134.
  24. S. Bahaidarah, J. Al���Ata, N. Alkhushi, et al., ���Outcome of Ductus Arteriosus Stenting Including Vertical Tubular and Convoluted Tortuous Ducts With Emphasis on Technical Considerations,��� Egyptian Heart Journal 73, no. 1 (2021): 83, https://doi.org/10.1186/s43044-021-00210-4.
  25. A. B. Scanlan, A. V. Nguyen, A. Ilina, et al., ���Comparison of 3D Echocardiogram���Derived 3D Printed Valve Models to Molded Models for Simulated Repair of Pediatric Atrioventricular Valves,��� Pediatric Cardiology 39, no. 3 (2018): 538���547, https://doi.org/10.1007/s00246-017-1785-4.
  26. C. Herz, D. F. Pace, H. H. Nam, et al., ���Segmentation of Tricuspid Valve Leaflets From Transthoracic 3D Echocardiograms of Children With Hypoplastic Left Heart Syndrome Using Deep Learning,��� Frontiers in Cardiovascular Medicine 8 (2021): 735587, https://doi.org/10.3389/fcvm.2021.735587.

Grants

  1. /This study was supported by NIH R01HL153166, an Additional Ventures Expansion Award, Additional Ventures Single Ventricle Research Fund, The Topolewski Endowed Chair at the Children's Hospital of Philadelphia, T32 HL0097915, CHOP Cardiac Center Research Grant.

Word Cloud

Created with Highcharts 10.0.03DmeasurementsPDA2DDASanatomyductallengthDD-PBFautomaticsemi-automaticsignificantlyarteriosuspulmonaryhowevercustomCTAcenterlinesdiametercomparedmanualangiogramsstentDuctaldifferentdiametersmodelingquantificationproceduralBACKGROUND:Ductusstentingusedpalliateinfantsductal-dependentbloodflowpatentductuscancomplexheterogenousAIMS:developedopen-sourcesoftwaremodelquantifyMETHODS:retrospectivelyidentified33neonatesnovelworkflowimplementedSlicerSlicerHeartsemi-automaticallyextractcoursesurroundingvesselscurvaturetortuosityautomaticallycalculatedmanuallyadjusteddimensionsprojectionalangioplastyRESULTS:successfullymodeledquantifiedsubjectsstraight-lineaorticarterySemi-automaticsimilartotalMinimummaximumlargerInter-readerreliabilityhigheradjustmentstandardmeasurementdifferencesconsistentacrossPGEdosesCONCLUSIONS:Automaticfeasibleefficientenablingreproducibleplanningpatientsdevelopmentneededwellinvestigationwhethermodeling-derivedinfluencedurationoutcomeQuantitativeAnalysisAnatomyInformPlanningArteriosusStentingCTangiographycongenitalheartdisease

Similar Articles

Cited By

No available data.