Peripheral neuroblastic tumors behaving badly: an update on high-risk morphologic and molecular groupings.

Jason A Jarzembowski, Samuel Navarro, Hiroyuki Shimada
Author Information
  1. Jason A Jarzembowski: Department of Pathology, Medical College of Wisconsin and Children'S Hospital of Wisconsin, 9000 W. Wisconsin Ave, Milwaukee, MS#701,WI , 53226, USA. jjarzemb@mcw.edu. ORCID
  2. Samuel Navarro: Department of Pathology, Medical School, University of Valencia and CIBERONC (ISCIII), Madrid, Spain.
  3. Hiroyuki Shimada: Department of Pathology, Stanford University, Stanford, CA, USA.

Abstract

Peripheral neuroblastic tumors occur on a histologic spectrum from benign ganglioneuromas to malignant neuroblastomas, but even within the latter category, there is extensive heterogeneity in morphologic appearance and genetic composition. The International Neuroblastoma Pathology Committee classification has traditionally been used to successfully categorize tumors with favorable or unfavorable histology, but morphology must be supplemented with the results of additional testing. While MYCN amplification, diploid DNA content, and 11q loss have long been known to be negative prognostic factors, a new group of molecular biomarkers has emerged that define discrete high-risk categories. These include MYCN/MYC overexpression, dysregulated telomere maintenance mechanisms (both increased expression of telomere reverse transcriptase and alternate lengthening of telomeres), and ALK aberrations. Testing for these biomarkers and an integrated classification scheme may lead to improved risk stratification and selection of emerging targeted therapies.

Keywords

References

  1. Pinto NR et al (2015) Advances in risk classification and treatment strategies for neuroblastoma. J Clin Oncol 33(27):3008–3017 [PMID: 26304901]
  2. Cohn SL et al (2009) The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol 27(2):289–297 [PMID: 19047291]
  3. Morgenstern DA et al (2019) The challenge of defining “ultra-high-risk” neuroblastoma. Pediatr Blood Cancer 66(4):e27556 [PMID: 30479064]
  4. Irwin MS et al (2021) Revised neuroblastoma risk classification system: a report from the Children’s Oncology Group. J Clin Oncol 39(29):3229–3241 [PMID: 34319759]
  5. Chung C et al (2021) Neuroblastoma. Pediatr Blood Cancer 68 Suppl 2(Suppl 2):e28473
  6. DuBois SG, Macy ME, Henderson TO (2022) High-risk and relapsed neuroblastoma: toward more cures and better outcomes. Am Soc Clin Oncol Educ Book 42:1–13 [PMID: 35522915]
  7. Ikegaki N, Shimada H, C. International Neuroblastoma Pathology (2019) Subgrouping of unfavorable histology neuroblastomas with immunohistochemistry toward precision prognosis and therapy stratification. JCO Precis Oncol 3:PO.18.00312
  8. Pugh TJ et al (2013) The genetic landscape of high-risk neuroblastoma. Nat Genet 45(3):279–284 [PMID: 23334666]
  9. Shimada H, TA (2022) Peripheral neuroblastic tumours: introduction. In: T.L. Jarzembowski JA (eds) Paediatric tumours, International Agency for Research on Cancer: Lyon (France)
  10. Jarzembowski JA, Beiske K, Cohn SL, de Krijger RR, Irwin MS, Navarro S, Okita H, Shimada H, Stahlschmidt J, Vokuhl C, Wang LL, Cohen M, Reyes-Múgica M (2023) Neuroblastoma histopathology reporting guide, 1st edn. International Collaboration on Cancer Reporting, Sydney, Australia
  11. Davis JL, Jarzembowski JA, Reyes-Mugica M, Shimada H, Bagatell R (2023) Protocol for the examination of resection specimens from patients with neuroblastoma. C.o.A. Pathologists. Version 5.0.0.0. Available at: https://www.cap.org/protocols-and-guidelines/cancer-reporting-tools/cancer-protocol-templates
  12. Shimada H et al (1999) The international neuroblastoma pathology classification (the Shimada system). Cancer 86(2):364–372 [PMID: 10421273]
  13. Shimada H et al (1999) Terminology and morphologic criteria of neuroblastic tumors: recommendations by the International Neuroblastoma Pathology Committee. Cancer 86(2):349–363 [PMID: 10421272]
  14. Shimada H et al (1984) Histopathologic prognostic factors in neuroblastic tumors: definition of subtypes of ganglioneuroblastoma and an age-linked classification of neuroblastomas. J Natl Cancer Inst 73(2):405–416 [PMID: 6589432]
  15. Peuchmaur M et al (2003) Revision of the International Neuroblastoma Pathology Classification: confirmation of favorable and unfavorable prognostic subsets in ganglioneuroblastoma, nodular. Cancer 98(10):2274–2281 [PMID: 14601099]
  16. Burgues O et al (2006) Prognostic value of the International Neuroblastoma Pathology Classification in Neuroblastoma (Schwannian stroma-poor) and comparison with other prognostic factors: a study of 182 cases from the Spanish Neuroblastoma Registry. Virchows Arch 449(4):410–420 [PMID: 16941154]
  17. Shimada H et al (2001) International neuroblastoma pathology classification for prognostic evaluation of patients with peripheral neuroblastic tumors: a report from the Children’s Cancer Group. Cancer 92(9):2451–2461 [PMID: 11745303]
  18. Goto S et al (2001) Histopathology (International Neuroblastoma Pathology Classification) and MYCN status in patients with peripheral neuroblastic tumors: a report from the Children’s Cancer Group. Cancer 92(10):2699–2708 [PMID: 11745206]
  19. Sano H et al (2006) International neuroblastoma pathology classification adds independent prognostic information beyond the prognostic contribution of age. Eur J Cancer 42(8):1113–1119 [PMID: 16624549]
  20. Joshi VV et al (1991) Evaluation of the Shimada classification in advanced neuroblastoma with a special reference to the mitosis-karyorrhexis index: a report from the Childrens Cancer Study Group. Mod Pathol 4(2):139–147 [PMID: 2047378]
  21. Bhardwaj N et al (2022) Mitosis-Karyorrhexis Index evaluation by digital image visual analysis for application of International Neuroblastoma Pathology Classification in FNA biopsy. Cancer Cytopathol 130(2):128–135 [PMID: 34633743]
  22. Shimada H et al (1995) Identification of subsets of neuroblastomas by combined histopathologic and N-myc analysis. J Natl Cancer Inst 87(19):1470–1476 [PMID: 7674334]
  23. Niemas-Teshiba R et al (2018) MYC-family protein overexpression and prominent nucleolar formation represent prognostic indicators and potential therapeutic targets for aggressive high-MKI neuroblastomas: a report from the children’s oncology group. Oncotarget 9(5):6416–6432 [PMID: 29464082]
  24. Wang LL et al (2013) Neuroblastoma of undifferentiated subtype, prognostic significance of prominent nucleolar formation, and MYC/MYCN protein expression: a report from the Children’s Oncology Group. Cancer 119(20):3718–3726 [PMID: 23901000]
  25. Wang LL et al (2015) Augmented expression of MYC and/or MYCN protein defines highly aggressive MYC-driven neuroblastoma: a Children’s Oncology Group study. Br J Cancer 113(1):57–63 [PMID: 26035700]
  26. Westermark UK et al (2011) The MYCN oncogene and differentiation in neuroblastoma. Semin Cancer Biol 21(4):256–266 [PMID: 21849159]
  27. Campbell K et al (2017) Association of MYCN copy number with clinical features, tumor biology, and outcomes in neuroblastoma: a report from the Children’s Oncology Group. Cancer 123(21):4224–4235 [PMID: 28696504]
  28. Ambros IM et al (2020) Age dependency of the prognostic impact of tumor genomics in localized resectable MYCN-nonamplified neuroblastomas. Report from the SIOPEN Biology Group on the LNESG Trials and a COG Validation Group. J Clin Oncol 38(31):3685–3697 [PMID: 32903140]
  29. Strother DR et al (2012) Outcome after surgery alone or with restricted use of chemotherapy for patients with low-risk neuroblastoma: results of Children’s Oncology Group study P9641. J Clin Oncol 30(15):1842–1848 [PMID: 22529259]
  30. Schleiermacher G et al (2012) Segmental chromosomal alterations have prognostic impact in neuroblastoma: a report from the INRG project. Br J Cancer 107(8):1418–1422 [PMID: 22976801]
  31. Pinto N et al (2016) Segmental chromosomal aberrations in localized neuroblastoma can be detected in formalin-fixed paraffin-embedded tissue samples and are associated with recurrence. Pediatr Blood Cancer 63(6):1019–1023 [PMID: 26864375]
  32. Pinto N et al (2023) Impact of genomic and clinical factors on outcome of children >/=18 months of age with stage 3 neuroblastoma with unfavorable histology and without MYCN amplification: a Children’s Oncology Group (COG) report. Clin Cancer Res 29(8):1546–1556 [PMID: 36749880]
  33. Hartlieb SA et al (2021) Alternative lengthening of telomeres in childhood neuroblastoma from genome to proteome. Nat Commun 12(1):1269 [PMID: 33627664]
  34. Meeser A et al (2022) Reliable assessment of telomere maintenance mechanisms in neuroblastoma. Cell Biosci 12(1):160 [PMID: 36153564]
  35. Roderwieser A et al (2019) Telomerase is a prognostic marker of poor outcome and a therapeutic target in neuroblastoma. JCO Precis Oncol 3:1–20 [PMID: 35100718]
  36. Shimada H, Ikegaki N (2022) Genetic and histopathological heterogeneity of neuroblastoma and precision therapeutic approaches for extremely unfavorable histology subgroups. Biomolecules 12(1):79
  37. Werr L, R C, Bartenhagen C, George SL, Fischer M (2024) Telomere maintenance mechanisms in neuroblastoma: new insights and translational implications. EJC Paediatr Oncol 3:100156
  38. Yu EY, Cheung NV, Lue NF (2022) Connecting telomere maintenance and regulation to the developmental origin and differentiation states of neuroblastoma tumor cells. J Hematol Oncol 15(1):117 [PMID: 36030273]
  39. Koneru B et al (2020) Telomere maintenance mechanisms define clinical outcome in high-risk neuroblastoma. Cancer Res 80(12):2663–2675 [PMID: 32291317]
  40. Matsuno R et al (2018) Rare MYC-amplified neuroblastoma with large cell histology. Pediatr Dev Pathol 21(5):461–466 [PMID: 29426276]
  41. Wei SJ et al (2020) MYC transcription activation mediated by OCT4 as a mechanism of resistance to 13-cisRA-mediated differentiation in neuroblastoma. Cell Death Dis 11(5):368 [PMID: 32409685]
  42. Zimmerman MW et al (2018) MYC drives a subset of high-risk pediatric neuroblastomas and is activated through mechanisms including enhancer hijacking and focal enhancer amplification. Cancer Discov 8(3):320–335 [PMID: 29284669]
  43. Koh CM et al (2015) Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity. J Clin Invest 125(5):2109–2122 [PMID: 25893605]
  44. Wu KJ et al (1999) Direct activation of TERT transcription by c-MYC. Nat Genet 21(2):220–224 [PMID: 9988278]
  45. Lee S, Borah S, Bahrami A (2017) Detection of aberrant TERT promoter methylation by combined bisulfite restriction enzyme analysis for cancer diagnosis. J Mol Diagn 19(3):378–386 [PMID: 28284778]
  46. Lindner S et al (2015) Absence of telomerase reverse transcriptase promoter mutations in neuroblastoma. Biomed Rep 3(4):443–446 [PMID: 26171145]
  47. Valentijn LJ et al (2015) TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat Genet 47(12):1411–1414 [PMID: 26523776]
  48. Zhang JM, Zou L (2020) Alternative lengthening of telomeres: from molecular mechanisms to therapeutic outlooks. Cell Biosci 10:30 [PMID: 32175073]
  49. Pang Y et al (2023) The chromatin remodeler ATRX: role and mechanism in biology and cancer. Cancers (Basel) 15(8):2228
  50. Qadeer ZA et al (2019) ATRX in-frame fusion neuroblastoma is sensitive to EZH2 inhibition via modulation of neuronal gene signatures. Cancer Cell 36(5):512-527 e9 [PMID: 31631027]
  51. Salomoni P (2013) The PML-interacting protein DAXX: histone loading gets into the picture. Front Oncol 3:152 [PMID: 23760585]
  52. Avinent-Perez M et al (2024) Tackling ALT-positive neuroblastoma: is it time to redefine risk classification systems? A systematic review with IPD meta-analysis. Neoplasia 60:101106 [PMID: 39733691]
  53. Brady SW et al (2020) Pan-neuroblastoma analysis reveals age- and signature-associated driver alterations. Nat Commun 11(1):5183 [PMID: 33056981]
  54. Mosse YP (2016) Anaplastic lymphoma kinase as a cancer target in pediatric malignancies. Clin Cancer Res 22(3):546–552 [PMID: 26503946]
  55. Mosse YP et al (2008) Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455(7215):930–935 [PMID: 18724359]
  56. Berry T et al (2012) The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in neuroblastoma. Cancer Cell 22(1):117–130 [PMID: 22789543]
  57. Rosswog C et al (2023) Genomic ALK alterations in primary and relapsed neuroblastoma. Br J Cancer 128(8):1559–1571 [PMID: 36807339]
  58. Caren H et al (2008) High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours. Biochem J 416(2):153–159 [PMID: 18990089]
  59. Chen Y et al (2008) Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455(7215):971–974 [PMID: 18923524]
  60. Janoueix-Lerosey I et al (2018) The ALK receptor in sympathetic neuron development and neuroblastoma. Cell Tissue Res 372(2):325–337 [PMID: 29374774]
  61. Cazes A et al (2014) Activated Alk triggers prolonged neurogenesis and Ret upregulation providing a therapeutic target in ALK-mutated neuroblastoma. Oncotarget 5(9):2688–2702 [PMID: 24811913]
  62. Heukamp LC et al (2012) Targeted expression of mutated ALK induces neuroblastoma in transgenic mice. Sci Transl Med 4(141):141ra91 [PMID: 22764207]
  63. Zhu S et al (2012) Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell 21(3):362–373 [PMID: 22439933]
  64. Berlak M et al (2022) Mutations in ALK signaling pathways conferring resistance to ALK inhibitor treatment lead to collateral vulnerabilities in neuroblastoma cells. Mol Cancer 21(1):126 [PMID: 35689207]
  65. Carpenter EL, Mosse YP (2012) Targeting ALK in neuroblastoma–preclinical and clinical advancements. Nat Rev Clin Oncol 9(7):391–399 [PMID: 22585002]
  66. Pastorino F et al (2023) Therapeutic targeting of ALK in neuroblastoma: experience of Italian precision medicine in pediatric oncology. Cancers (Basel) 15(3):560
  67. Goldsmith KC et al (2023) Lorlatinib with or without chemotherapy in ALK-driven refractory/relapsed neuroblastoma: phase 1 trial results. Nat Med 29(5):1092–1102 [PMID: 37012551]
  68. Chen J et al (2021) Targeted therapy of TERT-rearranged neuroblastoma with BET bromodomain inhibitor and proteasome inhibitor combination therapy. Clin Cancer Res 27(5):1438–1451 [PMID: 33310889]
  69. Fischer-Mertens J et al (2022) Telomerase-targeting compounds Imetelstat and 6-thio-dG act synergistically with chemotherapy in high-risk neuroblastoma models. Cell Oncol (Dordr) 45(5):991–1003 [PMID: 35953764]
  70. Moreno L et al (2020) Accelerating drug development for neuroblastoma: summary of the Second Neuroblastoma Drug Development Strategy forum from Innovative Therapies for Children with Cancer and International Society of Paediatric Oncology Europe Neuroblastoma. Eur J Cancer 136:52–68 [PMID: 32653773]
  71. Raseley K et al (2023) Single-molecule telomere assay via optical mapping (SMTA-OM) can potentially define the ALT positivity of cancer. Genes (Basel) 14(6)

Word Cloud

Created with Highcharts 10.0.0tumorsPeripheralneuroblasticmorphologicNeuroblastomaclassificationMYCNmolecularbiomarkershigh-risktelomerereversetranscriptaselengtheningtelomeresoccurhistologicspectrumbenignganglioneuromasmalignantneuroblastomasevenwithinlattercategoryextensiveheterogeneityappearancegeneticcompositionInternationalPathologyCommitteetraditionallyusedsuccessfullycategorizefavorableunfavorablehistologymorphologymustsupplementedresultsadditionaltestingamplificationdiploidDNAcontent11qlosslongknownnegativeprognosticfactorsnewgroupemergeddefinediscretecategoriesincludeMYCN/MYCoverexpressiondysregulatedmaintenancemechanismsincreasedexpressionalternateALKaberrationsTestingintegratedschememayleadimprovedriskstratificationselectionemergingtargetedtherapiesbehavingbadly:updategroupingsAlternateMYCTelomere

Similar Articles

Cited By