Ureter development and associated congenital anomalies.

Andreas Kispert
Author Information
  1. Andreas Kispert: Institute of Molecular Biology, Hannover Medical School, Hannover, Germany. kispert.andreas@mh-hannover.de. ORCID

Abstract

Malformations of the ureter are among the most common birth defects in humans. Although some of these anomalies are asymptomatic, others are clinically relevant, causing perinatal lethality or progressing to kidney failure in childhood. The genetic causes and developmental aetiology of ureteral anomalies are difficult to study in humans; however, embryological and genetic analyses in the mouse have provided insights into the complex developmental programmes that govern ureter formation from simple tissue primordia, and the pathological consequences that result from disruption of these programmes. Abnormalities in the formation of the nephric duct and ureteric bud lead to changes in the number of ureters (and kidneys), whereas the formation of ectopic ureteric buds, failure of the nephric duct to target the cloaca or failure of the distal ureter to mature underlie vesicoureteral reflux, ureter ectopia, ureterocoele and subsequent hydroureter. Alterations in ureter specification, early growth or cyto-differentiation programmes have now also been associated with various forms of perinatal hydroureter and hydronephrosis as a consequence of functional obstruction. The characterization of cellular processes and molecular drivers of ureterogenesis in the mouse may not only aid understanding of the aetiology of human ureteral anomalies, improve prognostication and benefit the development of therapeutic strategies, but may also prove important for efforts to generate a bioartificial organ.

References

  1. Culp, D. A. in The Ureter (ed. Bergman, H.) 625���647 (Springer-Verlag, 1981).
  2. Barakat, A. J. & Drougas, J. G. Occurrence of congenital abnormalities of kidney and urinary tract in 13,775 autopsies. Urology 38, 347���350 (1991). [PMID: 1755145]
  3. Wiesel, A., Queisser-Luft, A., Clementi, M., Bianca, S. & Stoll, C. EUROSCAN study group. Prenatal detection of congenital renal malformations by fetal ultrasonographic examination: an analysis of 709,030 births in 12 European countries. Eur. J. Med. Genet. 48, 131���144 (2005). [PMID: 16053904]
  4. Zahid, M. et al. Imaging of ureter: a primer for the emergency radiologist. Emerg. Radiol. 28, 815���837 (2021). [PMID: 33851303]
  5. Houat, A. P. et al. Congenital anomalies of the upper urinary tract: a comprehensive review radiographics. Radiographics 41, E165 (2021). [PMID: 34469224]
  6. El-Kas, M., Farg, H. & El-Diasty, T. A. in The Ureter: A Comprehensive Review (eds Abdel-Gawad, M., Ali-El-Dein, B., Barry, J. & Stenzl, A.) 151���178 (Springer, 2023).
  7. Ramanathan, S. et al. Multi-modality imaging review of congenital abnormalities of kidney and upper urinary tract. World J. Radiol. 8, 132���141 (2016). [PMID: 26981222]
  8. Sanna-Cherchi, S. et al. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int. 76, 528���533 (2009). [PMID: 19536081]
  9. Wuhl, E. et al. Timing and outcome of renal replacement therapy in patients with congenital malformations of the kidney and urinary tract. Clin. J. Am. Soc. Nephrol. 8, 67���74 (2013). [PMID: 23085722]
  10. Ardissino, G. et al. Epidemiology of chronic renal failure in children: data from the ItalKid project. Pediatrics 111, e382���e387 (2003). [PMID: 12671156]
  11. Lee, R. S., Cendron, M., Kinnamon, D. D. & Nguyen, H. T. Antenatal hydronephrosis as a predictor of postnatal outcome: a meta-analysis. Pediatrics 118, 586���593 (2006). [PMID: 16882811]
  12. Radmayr, C. et al. EAU guidelines on paediatric urology. Presented at the EAU Annual Congress Paris 2024 (European Association of Urology, 2024).
  13. Kagan, M., Pleniceanu, O. & Vivante, A. The genetic basis of congenital anomalies of the kidney and urinary tract. Pediatr. Nephrol. 37, 2231���2243 (2022). [PMID: 35122119]
  14. Connaughton, D. M. & Hildebrandt, F. Disease mechanisms of monogenic congenital anomalies of the kidney and urinary tract. Am. J. Med. Genet. C. Semin. Med. Genet. 190, 325���343 (2022). [PMID: 36208064]
  15. Kolvenbach, C. M., Shril, S. & Hildebrandt, F. The genetics and pathogenesis of CAKUT. Nat. Rev. Nephrol. 19, 709���720 (2023). [PMID: 37524861]
  16. Sanna-Cherchi, S. et al. Copy-number disorders are a common cause of congenital kidney malformations. Am. J. Hum. Genet. 91, 987���997 (2012). [PMID: 23159250]
  17. Caruana, G. et al. Copy-number variation associated with congenital anomalies of the kidney and urinary tract. Pediatr. Nephrol. 30, 487���495 (2015). [PMID: 25270717]
  18. Verbitsky, M. et al. The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat. Genet. 51, 117���127 (2019). [PMID: 30578417]
  19. Wanner, N. et al. DNA methyltransferase 1 controls nephron progenitor cell renewal and differentiation. J. Am. Soc. Nephrol. 30, 63���78 (2019). [PMID: 30518531]
  20. Zhao, Z., Dai, X., Jiang, G. & Lin, F. ASH2L controls ureteric bud morphogenesis through the regulation of RET/GFRA1 signaling activity in a mouse model. J. Am. Soc. Nephrol. 34, 988���1002 (2023). [PMID: 36758123]
  21. Shi, H. et al. N-methyladenosine methylomic landscape of ureteral deficiency in reflux uropathy and obstructive uropathy. Front. Med. 9, 924579 (2022). [DOI: 10.3389/fmed.2022.924579]
  22. Hernandez-Diaz, S., Werler, M. M., Walker, A. M. & Mitchell, A. A. Folic acid antagonists during pregnancy and the risk of birth defects. N. Engl. J. Med. 343, 1608���1614 (2000). [PMID: 11096168]
  23. Wilson, J. G. & Warkany, J. Malformations in the genito-urinary tract induced by maternal vitamin A deficiency in the rat. Am. J. Anat. 83, 357���407 (1948). [PMID: 18098411]
  24. Rothman, K. J. et al. Teratogenicity of high vitamin A intake. N. Engl. J. Med. 333, 1369���1373 (1995). [PMID: 7477116]
  25. Yu, M. et al. Vitamin A deficiency disturbs ret expression and induces urinary tract developmental abnormalities in mice. Am. J. Nephrol. https://doi.org/10.1159/000541289 (2024).
  26. Groen In ���t Woud, S. et al. Maternal risk factors involved in specific congenital anomalies of the kidney and urinary tract: a case-control study. Birth Defects Res. A Clin. Mol. Teratol. 106, 596���603 (2016). [PMID: 27040999]
  27. Dart, A. B., Ruth, C. A., Sellers, E. A., Au, W. & Dean, H. J. Maternal diabetes mellitus and congenital anomalies of the kidney and urinary tract (CAKUT) in the child. Am. J. Kidney Dis. 65, 684���691 (2015). [PMID: 25595566]
  28. Manalich, R., Reyes, L., Herrera, M., Melendi, C. & Fundora, I. Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int. 58, 770���773 (2000). [PMID: 10916101]
  29. Martinovic, J., Benachi, A., Laurent, N., Daikha-Dahmane, F. & Gubler, M. C. Fetal toxic effects and angiotensin-II-receptor antagonists. Lancet 358, 241���242 (2001). [PMID: 11480433]
  30. Battin, M., Albersheim, S. & Newman, D. Congenital genitourinary tract abnormalities following cocaine exposure in utero. Am. J. Perinatol. 12, 425���428 (1995). [PMID: 8579655]
  31. Qazi, Q. et al. Renal anomalies in fetal alcohol syndrome. Pediatrics 63, 886���889 (1979). [PMID: 450525]
  32. Sampson, J. A. Ascending renal infection; with special reference to the reflux of urine from the bladder into the ureters as an etiological factor in its causation and maintenance. Johns. Hopkins Hosp. Bull. 14, 334���352 (1903).
  33. Davis, J. E., Hagedoorn, J. P. & Bergmann, L. L. in The Ureter (ed. Bergman, H.) 55���70 (Springer, 1981).
  34. Bondok, A., Eliwa, A. M. & Abdel-Gawad, M. in The Ureter: A Comprehensive Review (eds Abdel-Gawad, M., Ali-El-Dein, B., Barry, J., & Stenzl, A.) 47���91 (Springer, 2023).
  35. Bohnenpoll, T. et al. Diversification of cell lineages in ureter development. J. Am. Soc. Nephrol. 28, 1792���1801 (2017). [PMID: 28028137]
  36. Wu, X. R., Kong, X. P., Pellicer, A., Kreibich, G. & Sun, T. T. Uroplakins in urothelial biology, function, and disease. Kidney Int. 75, 1153���1165 (2009). [PMID: 19340092]
  37. Dalghi, M. G., Montalbetti, N., Carattino, M. D. & Apodaca, G. The urothelium: life in a liquid environment. Physiol. Rev. 100, 1621���1705 (2020). [PMID: 32191559]
  38. Mahoney, Z. X. et al. Discs-large homolog 1 regulates smooth muscle orientation in the mouse ureter. Proc. Natl Acad. Sci. USA 103, 19872���19877 (2006). [PMID: 17172448]
  39. Spronck, B., Merken, J. J., Reesink, K. D., Kroon, W. & Delhaas, T. Ureter smooth muscle cell orientation in rat is predominantly longitudinal. PLoS ONE 9, e86207 (2014). [PMID: 24465961]
  40. Velardo, J. T. in The Ureter (ed. Bergman, H.) 13���54 (Springer-Verlag, 1981).
  41. Boyarsky, S. & Labay, P. in The Ureter. (ed. Bergman, H.) 71���104 (Springer-Verlag, 1981).
  42. Feeney, M. M. & Rosenblum, N. D. Urinary tract pacemaker cells: current knowledge and insights from nonrenal pacemaker cells provide a basis for future discovery. Pediatr. Nephrol. 29, 629���635 (2014). [PMID: 24129851]
  43. Georgas, K. M. et al. An illustrated anatomical ontology of the developing mouse lower urogenital tract. Development 142, 1893���1908 (2015). [PMID: 25968320]
  44. McMahon, A. P. Development of the mammalian kidney. Curr. Top. Dev. Biol. 117, 31���64 (2016). [PMID: 26969971]
  45. Elmore, S. A. et al. Histology atlas of the developing mouse urinary system with emphasis on prenatal days E10.5-E18.5. Toxicol. Pathol. 47, 865���886 (2019). [PMID: 31599209]
  46. Schnell, J., Achieng, M. & Lindstrom, N. O. Principles of human and mouse nephron development. Nat. Rev. Nephrol. 18, 628���642 (2022). [PMID: 35869368]
  47. Bohnenpoll, T. et al. Tbx18 expression demarcates multipotent precursor populations in the developing urogenital system but is exclusively required within the ureteric mesenchymal lineage to suppress a renal stromal fate. Dev. Biol. 380, 25���36 (2013). [PMID: 23685333]
  48. Tanagho, E. A. in The Ureter (ed. Bergman, H.) 1���12 (Springer-Verlag, 1981).
  49. Uetani, N. & Bouchard, M. Plumbing in the embryo: developmental defects of the urinary tracts. Clin. Genet. 75, 307���317 (2009). [PMID: 19419410]
  50. Straube, P. et al. Interplay of SHH, WNT and BMP4 signaling regulates the development of the lamina propria in the murine ureter. Development 152, DEV204214 (2025). [PMID: 39817691]
  51. Bouchard, M., Souabni, A., Mandler, M., Neubuser, A. & Busslinger, M. Nephric lineage specification by Pax2 and Pax8. Genes. Dev. 16, 2958���2970 (2002). [PMID: 12435636]
  52. Stewart, K. & Bouchard, M. Coordinated cell behaviours in early urogenital system morphogenesis. Semin. Cell Dev. Biol. 36, 13���20 (2014). [PMID: 25220017]
  53. Boualia, S. K. et al. A core transcriptional network composed of Pax2/8, Gata3 and Lim1 regulates key players of pro/mesonephros morphogenesis. Dev. Biol. 382, 555���566 (2013). [PMID: 23920117]
  54. Grote, D., Souabni, A., Busslinger, M. & Bouchard, M. Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133, 53���61 (2006). [PMID: 16319112]
  55. Kobayashi, A. et al. Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development 132, 2809���2823 (2005). [PMID: 15930111]
  56. Pedersen, A., Skjong, C. & Shawlot, W. Lim 1 is required for nephric duct extension and ureteric bud morphogenesis. Dev. Biol. 288, 571���581 (2005). [PMID: 16216236]
  57. Kitagaki, J. et al. FGF8 is essential for formation of the ductal system in the male reproductive tract. Development 138, 5369���5378 (2011). [PMID: 22110055]
  58. Grote, D. et al. Gata3 acts downstream of ��-catenin signaling to prevent ectopic metanephric kidney induction. PLoS Genet. 4, e1000316 (2008). [PMID: 19112489]
  59. Sanchez-Ferras, O. et al. A coordinated progression of progenitor cell states initiates urinary tract development. Nat. Commun. 12, 2627 (2021). [PMID: 33976190]
  60. Soofi, A., Levitan, I. & Dressler, G. R. Two novel EGFP insertion alleles reveal unique aspects of Pax2 function in embryonic and adult kidneys. Dev. Biol. 365, 241���250 (2012). [PMID: 22410172]
  61. Chia, I. et al. Nephric duct insertion is a crucial step in urinary tract maturation that is regulated by a Gata3-Raldh2-Ret molecular network in mice. Development 138, 2089���2097 (2011). [PMID: 21521737]
  62. Willem, M. et al. Specific ablation of the nidogen-binding site in the laminin ��1 chain interferes with kidney and lung development. Development 129, 2711���2722 (2002). [PMID: 12015298]
  63. Weiss, A. C. et al. Nephric duct insertion requires EphA4/EphA7 signaling from the pericloacal mesenchyme. Development 141, 3420���3430 (2014). [PMID: 25139858]
  64. Marose, T. D., Merkel, C. E., McMahon, A. P. & Carroll, T. J. ��-Catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev. Biol. 314, 112���126 (2008). [PMID: 18177851]
  65. Hellmich, H. L., Kos, L., Cho, E. S., Mahon, K. A. & Zimmer, A. Embryonic expression of glial cell-line derived neurotrophic factor (GDNF) suggests multiple developmental roles in neural differentiation and epithelial-mesenchymal interactions. Mech. Dev. 54, 95���105 (1996). [PMID: 8808409]
  66. Pichel, J. G. et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382, 73���76 (1996). [PMID: 8657307]
  67. Reginensi, A. et al. Yap and Taz are required for Ret-dependent urinary tract morphogenesis. Development 142, 2696���2703 (2015). [PMID: 26243870]
  68. Hoshi, M. et al. Reciprocal spatiotemporally controlled apoptosis regulates Wolffian duct cloaca fusion. J. Am. Soc. Nephrol. 29, 775���783 (2018). [PMID: 29326158]
  69. Murawski, I. J., Myburgh, D. B., Favor, J. & Gupta, I. R. Vesico-ureteric reflux and urinary tract development in the Pax2 mouse. Am. J. Physiol. Renal Physiol. 293, F1736���F1745 (2007). [PMID: 17881463]
  70. Chi, X. et al. Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev. Cell 17, 199���209 (2009). [PMID: 19686681]
  71. Grobstein, C. Inductive interaction in the development of the mouse metanephros. J. Exp. Zool. 130, 319���339 (1955). [DOI: 10.1002/jez.1401300207]
  72. Schuchardt, A., D���Agati, V., Pachnis, V. & Costantini, F. Renal agenesis and hypodysplasia in ret-k mutant mice result from defects in ureteric bud development. Development 122, 1919���1929 (1996). [PMID: 8674430]
  73. Cacalano, G. et al. GFR��1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21, 53���62 (1998). [PMID: 9697851]
  74. Sainio, K. et al. Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124, 4077���4087 (1997). [PMID: 9374404]
  75. Davis, T. K., Hoshi, M. & Jain, S. To bud or not to bud: the RET perspective in CAKUT. Pediatr. Nephrol. 29, 597���608 (2014). [PMID: 24022366]
  76. Ihermann-Hella, A. et al. Mitogen-activated protein kinase (MAPK) pathway regulates branching by remodeling epithelial cell adhesion. PLoS Genet. 10, e1004193 (2014). [PMID: 24603431]
  77. Li, H. et al. Development of the urogenital system is regulated via the 3���UTR of GDNF. Sci. Rep. 9, 5302 (2019). [PMID: 30923332]
  78. Wellik, D. M., Hawkes, P. J. & Capecchi, M. R. Hox11 paralogous genes are essential for metanephric kidney induction. Genes. Dev. 16, 1423���1432 (2002). [PMID: 12050119]
  79. Torres, M., G��mez-Pardo, E., Dressler, G. R. & Gruss, P. Pax-2 controls multiple steps of urogenital development. Development 121, 4057���4065 (1995). [PMID: 8575306]
  80. Brophy, P. D., Ostrom, L., Lang, K. M. & Dressler, G. R. Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128, 4747���4756 (2001). [PMID: 11731455]
  81. Sajithlal, G., Zou, D., Silvius, D. & Xu, P. X. Eya 1 acts as a critical regulator for specifying the metanephric mesenchyme. Dev. Biol. 284, 323���336 (2005). [PMID: 16018995]
  82. Kobayashi, H., Kawakami, K., Asashima, M. & Nishinakamura, R. Six1 and Six4 are essential for Gdnf expression in the metanephric mesenchyme and ureteric bud formation, while Six1 deficiency alone causes mesonephric-tubule defects. Mech. Dev. 124, 290���303 (2007). [PMID: 17300925]
  83. Brodbeck, S., Besenbeck, B. & Englert, C. The transcription factor Six2 activates expression of the Gdnf gene as well as its own promoter. Mech. Dev. 121, 1211���1222 (2004). [PMID: 15327782]
  84. Gong, K. Q., Yallowitz, A. R., Sun, H., Dressler, G. R. & Wellik, D. M. A Hox-Eya-Pax complex regulates early kidney developmental gene expression. Mol. Cell. Biol. 27, 7661���7668 (2007). [PMID: 17785448]
  85. James, R. G., Kamei, C. N., Wang, Q., Jiang, R. & Schultheiss, T. M. Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development 133, 2995���3004 (2006). [PMID: 16790474]
  86. Kreidberg, J. A. et al. WT-1 is required for early kidney development. Cell 74, 679���691 (1993). [PMID: 8395349]
  87. Nishinakamura, R. et al. Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128, 3105���3115 (2001). [PMID: 11688560]
  88. Esquela, A. F. & Lee, S. J. Regulation of metanephric kidney development by growth/differentiation factor 11. Dev. Biol. 257, 356���370 (2003). [PMID: 12729564]
  89. Linton, J. M., Martin, G. R. & Reichardt, L. F. The ECM protein nephronectin promotes kidney development via integrin ��8��1-mediated stimulation of Gdnf expression. Development 134, 2501���2509 (2007). [PMID: 17537792]
  90. Takamiya, K. et al. A direct functional link between the multi-PDZ domain protein GRIP1 and the Fraser syndrome protein Fras1. Nat. Genet. 36, 172���177 (2004). [PMID: 14730302]
  91. Bullock, S. L., Fletcher, J. M., Beddington, R. S. & Wilson, V. A. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev. 12, 1894���1906 (1998). [PMID: 9637690]
  92. Vrontou, S. et al. Fras1 deficiency results in cryptophthalmos, renal agenesis and blebbed phenotype in mice. Nat. Genet. 34, 209���214 (2003). [PMID: 12766770]
  93. Miyamoto, N., Yoshida, M., Kuratani, S., Matsuo, I. & Aizawa, S. Defects of urogenital development in mice lacking Emx2. Development 124, 1653���1664 (1997). [PMID: 9165114]
  94. Kozlov, V. M. & Schedl, A. Duplex kidney formation: developmental mechanisms and genetic predisposition. F1000Res 9, F1000 Faculty Rev-2 (2020). [PMID: 32030122]
  95. Boualia, S. K. et al. Vesicoureteral reflux and other urinary tract malformations in mice compound heterozygous for Pax2 and Emx2. PLoS ONE 6, e21529 (2011). [PMID: 21731775]
  96. Michos, O. et al. Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development 134, 2397���2405 (2007). [PMID: 17522159]
  97. Kume, T., Deng, K. & Hogan, B. L. Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127, 1387���1395 (2000). [PMID: 10704385]
  98. Neirijnck, Y. et al. Sox11 gene disruption causes congenital anomalies of the kidney and urinary tract (CAKUT). Kidney Int. 93, 1142���1153 (2018). [PMID: 29459093]
  99. Wainwright, E. N., Wilhelm, D., Combes, A. N., Little, M. H. & Koopman, P. ROBO2 restricts the nephrogenic field and regulates Wolffian duct-nephrogenic cord separation. Dev. Biol. 404, 88���102 (2015). [PMID: 26116176]
  100. Grieshammer, U. et al. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev. Cell 6, 709���717 (2004). [PMID: 15130495]
  101. Miyazaki, Y., Oshima, K., Fogo, A., Hogan, B. L. & Ichikawa, I. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J. Clin. Invest. 105, 863���873 (2000). [PMID: 10749566]
  102. Desai, P. B. et al. Ift25 is not a cystic kidney disease gene but is required for early steps of kidney development. Mech. Dev. 151, 10���17 (2018). [PMID: 29626631]
  103. San Agustin, J. T. et al. Genetic link between renal birth defects and congenital heart disease. Nat. Commun. 7, 11103 (2016). [PMID: 27002738]
  104. Blake, J., Hu, D., Cain, J. E. & Rosenblum, N. D. Urogenital development in Pallister-Hall syndrome is disrupted in a cell-lineage-specific manner by constitutive expression of GLI3 repressor. Hum. Mol. Genet. 25, 437���447 (2016). [PMID: 26604140]
  105. Michos, O. et al. Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet. 6, e1000809 (2010). [PMID: 20084103]
  106. Basson, M. A. et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev. Cell 8, 229���239 (2005). [PMID: 15691764]
  107. Nishimura, H. et al. Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol. Cell 3, 1���10 (1999). [PMID: 10024874]
  108. Saburi, S. et al. Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat. Genet. 40, 1010���1015 (2008). [PMID: 18604206]
  109. Zhang, H. et al. FAT4 fine-tunes kidney development by regulating RET signaling. Dev. Cell 48, 780���792 e784 (2019). [PMID: 30853441]
  110. Yun, K. et al. Non-canonical Wnt5a/Ror2 signaling regulates kidney morphogenesis by controlling intermediate mesoderm extension. Hum. Mol. Genet. 23, 6807���6814 (2014). [PMID: 25082826]
  111. Debiec, H., Kutsche, M., Schachner, M. & Ronco, P. Abnormal renal phenotype in L1 knockout mice: a novel cause of CAKUT. Nephrol. Dial. Transpl. 17, 42���44 (2002). [DOI: 10.1093/ndt/17.suppl_9.42]
  112. Rutledge, E. A., Parvez, R. K., Short, K. M., Smyth, I. M. & McMahon, A. P. Morphogenesis of the kidney and lung requires branch-tip directed activity of the Adamts18 metalloprotease. Dev. Biol. 454, 156���169 (2019). [PMID: 31242448]
  113. Weigert, C. ��ber einige Bildungsfehler der Ureteren. Virchows Arch. 70, 490���501 (1977). [DOI: 10.1007/BF01935232]
  114. Hoshino, T. et al. Reduced BMP4 abundance in Gata2 hypomorphic mutant mice result in uropathies resembling human CAKUT. Genes. Cell 13, 159���170 (2008). [DOI: 10.1111/j.1365-2443.2007.01158.x]
  115. Mackie, G. G. & Stephens, F. D. Duplex kidneys: a correlation of renal dysplasia with position of the ureteral orifice. J. Urol. 114, 274���280 (1975). [PMID: 1171997]
  116. Yu, O. H., Murawski, I. J., Myburgh, D. B. & Gupta, I. R. Overexpression of RET leads to vesicoureteric reflux in mice. Am. J. Physiol. Renal Physiol. 287, F1123���F1130 (2004). [PMID: 15328070]
  117. Fillion, M. L. et al. Heterozygous loss-of-function mutation in Odd-skipped related 1 (Osr1) is associated with vesicoureteric reflux, duplex systems, and hydronephrosis. Am. J. Physiol. Renal Physiol. 313, F1106���F1115 (2017). [PMID: 28724605]
  118. Batourina, E. et al. Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat. Genet. 32, 109���115 (2002). [PMID: 12195422]
  119. Batourina, E. et al. Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat. Genet. 37, 1082���1089 (2005). [PMID: 16186816]
  120. Uetani, N. et al. Maturation of ureter-bladder connection in mice is controlled by LAR family receptor protein tyrosine phosphatases. J. Clin. Invest. 119, 924���935 (2009). [PMID: 19273906]
  121. Tang, Y. C. et al. Coordination of non-professional efferocytosis and actomyosin contractility during epithelial tissue morphogenesis. Cell Rep. 42, 112202 (2023). [PMID: 36871220]
  122. Iizuka-Kogo, A., Ishidao, T., Akiyama, T. & Senda, T. Abnormal development of urogenital organs in Dlgh1-deficient mice. Development 134, 1799���1807 (2007). [PMID: 17435047]
  123. Li, Q. et al. ROBO2-mediated RALDH2 signaling is required for common nephric duct fusion with primitive bladder. Dev. Biol. 464, 103���110 (2020). [PMID: 32562756]
  124. Bohnenpoll, T. & Kispert, A. Ureter growth and differentiation. Semin. Cell Dev. Biol. 36, 21���30 (2014). [PMID: 25087982]
  125. Mills, C. G. et al. Asymmetric BMP4 signalling improves the realism of kidney organoids. Sci. Rep. 7, 14824 (2017). [PMID: 29093551]
  126. Sweeney, D., Lindstrom, N. & Davies, J. A. Developmental plasticity and regenerative capacity in the renal ureteric bud/collecting duct system. Development 135, 2505���2510 (2008). [PMID: 18579677]
  127. Airik, R., Bussen, M., Singh, M. K., Petry, M. & Kispert, A. Tbx18 regulates the development of the ureteral mesenchyme. J. Clin. Invest. 116, 663���674 (2006). [PMID: 16511601]
  128. Brenner-Anantharam, A. et al. Tailbud-derived mesenchyme promotes urinary tract segmentation via BMP4 signaling. Development 134, 1967���1975 (2007). [PMID: 17442697]
  129. Weiss, A. C. et al. Permissive ureter specification by TBX18-mediated repression of metanephric gene expression. Development 150, dev201048 (2023). [PMID: 36960826]
  130. Vivante, A. et al. Mutations in TBX18 cause dominant urinary tract malformations via transcriptional dysregulation of ureter development. Am. J. Hum. Genet. 97, 291���301 (2015). [PMID: 26235987]
  131. Farin, H. F. et al. Transcriptional repression by the T-box proteins Tbx18 and Tbx15 depends on Groucho corepressors. J. Biol. Chem. 282, 25748���25759 (2007). [PMID: 17584735]
  132. Yu, J., Carroll, T. J. & McMahon, A. P. Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 129, 5301���5312 (2002). [PMID: 12399320]
  133. Haraguchi, R. et al. The hedgehog signal induced modulation of bone morphogenetic protein signaling: an essential signaling relay for urinary tract morphogenesis. PLoS ONE 7, e42245 (2012). [PMID: 22860096]
  134. Bohnenpoll, T. et al. A SHH-FOXF1-BMP4 signaling axis regulating growth and differentiation of epithelial and mesenchymal tissues in ureter development. PLoS Genet. 13, e1006951 (2017). [PMID: 28797033]
  135. Mamo, T. M. et al. BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the developing mouse ureter. Hum. Mol. Genet. 26, 3553���3563 (2017). [PMID: 28655168]
  136. Wang, G. J., Brenner-Anantharam, A., Vaughan, E. D. & Herzlinger, D. Antagonism of BMP4 signaling disrupts smooth muscle investment of the ureter and ureteropelvic junction. J. Urol. 181, 401���407 (2009). [PMID: 19010499]
  137. Miyazaki, Y., Oshima, K., Fogo, A. & Ichikawa, I. Evidence that bone morphogenetic protein 4 has multiple biological functions during kidney and urinary tract development. Kidney Int. 63, 835���844 (2003). [PMID: 12631064]
  138. Miyazono, K., Kamiya, Y. & Morikawa, M. Bone morphogenetic protein receptors and signal transduction. J. Biochem. 147, 35���51 (2010). [PMID: 19762341]
  139. Tripathi, P., Wang, Y., Casey, A. M. & Chen, F. Absence of canonical Smad signaling in ureteral and bladder mesenchyme causes ureteropelvic junction obstruction. J. Am. Soc. Nephrol. 23, 618���628 (2012). [PMID: 22282597]
  140. Airik, R. et al. Hydroureternephrosis due to loss of Sox9-regulated smooth muscle cell differentiation of the ureteric mesenchyme. Hum. Mol. Genet. 19, 4918���4929 (2010). [PMID: 20881014]
  141. Caubit, X. et al. Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development 135, 3301���3310 (2008). [PMID: 18776146]
  142. Kurz, J. et al. GATA6 is a crucial factor for Myocd expression in the visceral smooth muscle cell differentiation program of the murine ureter. Development 149, dev200522 (2022). [PMID: 35905011]
  143. Nakahiro, T., Kurooka, H., Mori, K., Sano, K. & Yokota, Y. Identification of BMP-responsive elements in the mouse Id2 gene. Biochem. Biophys. Res. Commun. 399, 416���421 (2010). [PMID: 20674548]
  144. Aoki, Y. et al. Id2 haploinsufficiency in mice leads to congenital hydronephrosis resembling that in humans. Genes Cell 9, 1287���1296 (2004). [DOI: 10.1111/j.1365-2443.2004.00805.x]
  145. Wang, D. Z. & Olson, E. N. Control of smooth muscle development by the myocardin family of transcriptional coactivators. Curr. Opin. Genet. Dev. 14, 558���566 (2004). [PMID: 15380248]
  146. Trowe, M. O. et al. Canonical Wnt signaling regulates smooth muscle precursor development in the mouse ureter. Development 139, 3099���3108 (2012). [PMID: 22833126]
  147. Aydogdu, N. et al. TBX2 and TBX3 act downstream of canonical WNT signaling in patterning and differentiation of the mouse ureteric mesenchyme. Development 145, dev171827 (2018). [PMID: 30478225]
  148. Meuser, M. et al. FGFR2 signaling enhances the SHH-BMP4 signaling axis in early ureter development. Development 149, dev200021 (2022). [PMID: 35020897]
  149. Deuper, L. et al. Mesenchymal FGFR1 and FGFR2 control patterning of the ureteric mesenchyme by balancing SHH and BMP4 signaling. Development 149, dev200767 (2022). [PMID: 36094016]
  150. Bohnenpoll, T. et al. Retinoic acid signaling maintains epithelial and mesenchymal progenitors in the developing mouse ureter. Sci. Rep. 7, 14803 (2017). [PMID: 29093497]
  151. Weiss, A. C. et al. Delayed onset of smooth muscle cell differentiation leads to hydroureter formation in mice with conditional loss of the zinc finger transcription factor gene Gata2 in the ureteric mesenchyme. J. Pathol. 248, 452���463 (2019). [PMID: 30916783]
  152. Weiss, R. M. et al. Brg1 determines urothelial cell fate during ureter development. J. Am. Soc. Nephrol. 24, 618���626 (2013). [PMID: 23449535]
  153. Gandhi, D. et al. Retinoid signaling in progenitors controls specification and regeneration of the urothelium. Dev. Cell 26, 469���482 (2013). [PMID: 23993789]
  154. Qasrawi, F., Meuser, M., Lehnhoff, F., Schulte, M. & Kispert, A. S100A1 expression characterizes terminally differentiated superficial cells in the urothelium of the murine bladder and ureter. Histochem. Cell Biol. 158, 389���399 (2022). [PMID: 35648290]
  155. Varley, C. L. et al. Role of PPAR �� and EGFR signalling in the urothelial terminal differentiation programme. J. Cell Sci. 117, 2029���2036 (2004). [PMID: 15054105]
  156. Liu, C. et al. Pparg promotes differentiation and regulates mitochondrial gene expression in bladder epithelial cells. Nat. Commun. 10, 4589 (2019). [PMID: 31597917]
  157. Karni-Schmidt, O. et al. Distinct expression profiles of p63 variants during urothelial development and bladder cancer progression. Am. J. Pathol. 178, 1350���1360 (2011). [PMID: 21356385]
  158. Yu, Z., Mannik, J., Soto, A., Lin, K. K. & Andersen, B. The epidermal differentiation-associated Grainyhead gene Get1/Grhl3 also regulates urothelial differentiation. EMBO J. 28, 1890���1903 (2009). [PMID: 19494835]
  159. Bell, S. M. et al. Kruppel-like factor 5 is required for formation and differentiation of the bladder urothelium. Dev. Biol. 358, 79���90 (2011). [PMID: 21803035]
  160. Bock, M. et al. Identification of ELF3 as an early transcriptional regulator of human urothelium. Dev. Biol. 386, 321���330 (2014). [PMID: 24374157]
  161. Varley, C. L., Bacon, E. J., Holder, J. C. & Southgate, J. FOXA1 and IRF-1 intermediary transcriptional regulators of PPAR��-induced urothelial cytodifferentiation. Cell Death Differ. 16, 103���114 (2009). [PMID: 18688264]
  162. Fishwick, C. et al. Heterarchy of transcription factors driving basal and luminal cell phenotypes in human urothelium. Cell Death Differ. 24, 809���818 (2017). [PMID: 28282036]
  163. Ramal, M., Corral, S., Kalisz, M., Lapi, E. & Real, F. X. The urothelial gene regulatory network: understanding biology to improve bladder cancer management. Oncogene 43, 1���21 (2024). [PMID: 37996699]
  164. Hu, P. et al. Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux. J. Cell Biol. 151, 961���972 (2000). [PMID: 11085999]
  165. Hu, P. et al. Role of membrane proteins in permeability barrier function: uroplakin ablation elevates urothelial permeability. Am. J. Physiol. Renal Physiol. 283, F1200���F1207 (2002). [PMID: 12388410]
  166. Kong, X. T. et al. Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases. J. Cell Biol. 167, 1195���1204 (2004). [PMID: 15611339]
  167. Fogelgren, B. et al. Urothelial defects from targeted inactivation of exocyst sec10 in mice cause ureteropelvic junction obstructions. PLoS ONE 10, e0129346 (2015). [PMID: 26046524]
  168. Bartoli, F. A. et al. Urothelium damage as the primary cause of ureteropelvic junction obstruction: a new hypothesis. Urol. Res. 24, 9���13 (1996). [PMID: 8966845]
  169. Wang, Z., Wang, D. Z., Pipes, G. C. & Olson, E. N. Myocardin is a master regulator of smooth muscle gene expression. Proc. Natl Acad. Sci. USA 100, 7129���7134 (2003). [PMID: 12756293]
  170. Huang, J. et al. Myocardin regulates expression of contractile genes in smooth muscle cells and is required for closure of the ductus arteriosus in mice. J. Clin. Invest. 118, 515���525 (2008). [PMID: 18188448]
  171. Huang, J. et al. Myocardin is required for maintenance of vascular and visceral smooth muscle homeostasis during postnatal development. Proc. Natl Acad. Sci. USA 112, 4447���4452 (2015). [PMID: 25805819]
  172. Kurz, J. et al. Notch signaling is a novel regulator of visceral smooth muscle cell differentiation in the murine ureter. Development 149, dev199735 (2022). [PMID: 35103284]
  173. Medrano, S., Sequeira-Lopez, M. L. & Gomez, R. A. Deletion of the miR-143/145 cluster leads to hydronephrosis in mice. Am. J. Pathol. 184, 3226���3238 (2014). [PMID: 25307343]
  174. Lee, J. M. et al. Ahnak is required to balance calcium ion homeostasis and smooth muscle development in the urinary system. Cell Biosci. 13, 108 (2023). [PMID: 37308968]
  175. Miyazaki, Y. et al. Angiotensin induces the urinary peristaltic machinery during the perinatal period. J. Clin. Invest. 102, 1489���1497 (1998). [PMID: 9788961]
  176. Chang, C. P. et al. Calcineurin is required in urinary tract mesenchyme for the development of the pyeloureteral peristaltic machinery. J. Clin. Invest. 113, 1051���1058 (2004). [PMID: 15057312]
  177. Iskander, S. M., Feeney, M. M., Yee, K. & Rosenblum, N. D. Protein kinase 2�� is expressed in neural crest-derived urinary pacemaker cells and required for pyeloureteric contraction. J. Am. Soc. Nephrol. 29, 1198���1209 (2018). [PMID: 29436516]
  178. Cain, J. E., Islam, E., Haxho, F., Blake, J. & Rosenblum, N. D. GLI3 repressor controls functional development of the mouse ureter. J. Clin. Invest. 121, 1199���1206 (2011). [PMID: 21339645]

Word Cloud

Created with Highcharts 10.0.0ureteranomaliesfailureprogrammesformationhumansperinatalgeneticdevelopmentalaetiologyureteralmousenephricductureterichydroureteralsoassociatedmaydevelopmentMalformationsamongcommonbirthdefectsAlthoughasymptomaticothersclinicallyrelevantcausinglethalityprogressingkidneychildhoodcausesdifficultstudyhoweverembryologicalanalysesprovidedinsightscomplexgovernsimpletissueprimordiapathologicalconsequencesresultdisruptionAbnormalitiesbudleadchangesnumberureterskidneyswhereasectopicbudstargetcloacadistalmatureunderlievesicoureteralrefluxectopiaureterocoelesubsequentAlterationsspecificationearlygrowthcyto-differentiationnowvariousformshydronephrosisconsequencefunctionalobstructioncharacterizationcellularprocessesmoleculardriversureterogenesisaidunderstandinghumanimproveprognosticationbenefittherapeuticstrategiesproveimportanteffortsgeneratebioartificialorganUretercongenital

Similar Articles

Cited By

No available data.