An Interplay Between Hypothalamic Microstructure, Systemic Metabolism and Gut Microbiome Composition in Male Rats at Hyperacute Timepoint Post TBI.
Palkin Arora, Megha Kumari, Kavita Singh, M Memita Devi, Poonam Rana, Rajat Sandhir, Richa Trivedi
Author Information
Palkin Arora: Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India.
Megha Kumari: Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India.
Kavita Singh: Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India.
M Memita Devi: Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India.
Poonam Rana: Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India.
Rajat Sandhir: Department of Biochemistry, Panjab University, Chandigarh, India. ORCID
Richa Trivedi: Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India. ORCID
Traumatic brain injury (TBI) is an insult to the brain that impacts neuronal and non-neuronal cells/tissues. The study aimed to understand TBI-induced early changes in the brain and systemic physiology. The male rats were subjected to mild and moderate TBI, where serum and urine metabolic fingerprints of mild TBIrats showed a hypermetabolic response with increased energy metabolites, amino acids, and gut metabolites in serum and increased TCA cycle intermediates in urine. In contrast, the moderate TBIrats showed decreased lactate, pyruvate, amino acids (glycine and leucine) and gut metabolites [trimethylamine N OXIDE (TMAO), choline and acetate] in serum. The urine showed increased pyruvate, creatinine, and allantoin levels. To understand the brain's role in altered metabolic physiology, hypothalamus structure was assessed using diffusion tensor imaging (DTI) and stress levels were observed using serum corticosterone. The injured rats exhibited changes in DTI metrics in the hypothalamus, suggesting a potential disruption in the regulation of the hypothalamus-pituitary-adrenal axis (HPA) axis. These alterations were accompanied by increased TNF-α levels after moderate TBI. The injury induced allostatic overload, accompanied by impaired hypothalamic structure, and metabolic physiology also showed gut microbiome dysbiosis. The gut microbiome showed an increased Firmicutes: Bacteroidetes ratio after injury, with variable gut composition after both injuries. Therefore, the present study provides insight into an interplay between the HPA axis, metabolism, and gut microbiome following TBI. Importantly, this crosstalk between the regulatory systems was different after mild and moderate injury, highlighting the need to assess injury phenotype based on the severity.
Abdelmalik, P. A., N. Draghic, and G. S. F. Ling. 2019. “Management of Moderate and Severe Traumatic Brain Injury.” Transfusion 59: 1529–1538. https://doi.org/10.1111/trf.15171.
Alam, A., E. P. Thelin, T. Tajsic, et al. 2020. “Cellular Infiltration in Traumatic Brain Injury.” Journal of Neuroinflammation 17: 328. https://doi.org/10.1186/s12974‐020‐02005‐x.
Alegiani, A. C., S. MacLean, H. Braass, et al. 2017. “Comprehensive Analysis of Early Fractional Anisotropy Changes in Acute Ischemic Stroke.” PLoS One 12: e0188318. https://doi.org/10.1371/journal.pone.0188318.
Arora, P., K. Singh, M. Kumari, and R. Trivedi. 2022. “Temporal Profile of Serum Metabolites and Inflammation Following Closed Head Injury in Rats Is Associated With HPA Axis Hyperactivity.” Metabolomics 18: 28. https://doi.org/10.1007/s11306‐022‐01886‐8.
Banoei, M. M., C. Casault, S. M. Metwaly, and B. W. Winston. 2018. “Metabolomics and Biomarker Discovery in Traumatic Brain Injury.” Journal of Neurotrauma 35: 1831–1848. https://doi.org/10.1089/neu.2017.5326.
Brooks, G. A., and N. A. Martin. 2015. “Cerebral Metabolism Following Traumatic Brain Injury: New Discoveries With Implications for Treatment.” Frontiers in Neuroscience 8: 408. https://doi.org/10.3389/fnins.2014.00408.
Bykowski, E. A., J. N. Petersson, S. Dukelow, et al. 2021. “Urinary Metabolomic Signatures as Indicators of Injury Severity Following Traumatic Brain Injury: A Pilot Study.” IBRO Neuroscience Reports 11: 200–206. https://doi.org/10.1016/j.ibneur.2021.10.003.
Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, and S. P. Holmes. 2016. “DADA2: High‐Resolution Sample Inference From Illumina Amplicon Data.” Nature Methods 13: 581–583. https://doi.org/10.1038/nmeth.3869.
Cox, T. O., P. Lundgren, K. Nath, and C. A. Thaiss. 2022. “Metabolic Control by the Microbiome.” Genome Medicine 14: 80. https://doi.org/10.1186/s13073‐022‐01092‐0.
Dennis, E. L., J. Faskowitz, F. Rashid, et al. 2017. “Diverging Volumetric Trajectories Following Pediatric Traumatic Brain Injury.” Neuroimage: Clinical 15: 125–135. https://doi.org/10.1016/j.nicl.2017.03.014.
Diringer, M. N., A. R. Zazulia, and W. J. Powers. 2011. “Does Ischemia Contribute to Energy Failure in Severe TBI?” Translational Stroke Research 2: 517–523. https://doi.org/10.1007/s12975‐011‐0119‐8.
Du, D., W. Tang, C. Zhou, et al. 2021. “Fecal Microbiota Transplantation Is a Promising Method to Restore Gut Microbiota Dysbiosis and Relieve Neurological Deficits After Traumatic Brain Injury.” Oxidative Medicine and Cellular Longevity 2021: 5816837. https://doi.org/10.1155/2021/5816837.
Feighery, L., A. Smyth, S. Keely, et al. 2008. “Increased Intestinal Permeability in Rats Subjected to Traumatic Frontal Lobe Percussion Brain Injury.” Journal of Trauma 64: 131–137. https://doi.org/10.1097/TA.0b013e3181568d9f.
Ferreira‐Halder, C. V., A. V. d. S. Faria, and S. S. Andrade. 2017. “Action and Function of Faecalibacterium prausnitzii in Health and Disease.” Best Practice & Research Clinical Gastroenterology 31: 643–648. https://doi.org/10.1016/j.bpg.2017.09.011.
Ghandforoush‐Sattari, M., S. O. Mashayekhi, M. Nemati, and H. Ayromlou. 2011. “Changes in Plasma Concentration of Taurine in Stroke.” Neuroscience Letters 496: 172–175. https://doi.org/10.1016/j.neulet.2011.04.010.
Gisewhite, S., I. J. Stewart, G. Beilman, and E. Lusczek. 2021. “Urinary Metabolites Predict Mortality or Need for Renal Replacement Therapy After Combat Injury.” Critical Care 25: 119. https://doi.org/10.1186/s13054‐021‐03544‐2.
Goel, N., J. L. Workman, T. T. Lee, L. Innala, and V. Viau. 2014. “Sex Differences in the HPA Axis.” Comprehensive Physiology 4: 1121–1155. https://doi.org/10.1002/cphy.c130054.
Hanscom, M., D. J. Loane, and T. Shea‐Donohue. 2021. “Brain‐Gut Axis Dysfunction in the Pathogenesis of Traumatic Brain Injury.” Journal of Clinical Investigation 131, no. 12: e143777. https://doi.org/10.1172/JCI143777.
Hoffe, B., and M. R. Holahan. 2022. “Hyperacute Excitotoxic Mechanisms and Synaptic Dysfunction Involved in Traumatic Brain Injury.” Frontiers in Molecular Neuroscience 15: 831825. https://doi.org/10.3389/fnmol.2022.831825.
Jiménez‐Uribe, A. P., E. Y. Hernández‐Cruz, K. J. Ramírez‐Magaña, and J. Pedraza‐Chaverri. 2021. “Involvement of Tricarboxylic Acid Cycle Metabolites in Kidney Diseases.” Biomolecules 11: 1259. https://doi.org/10.3390/biom11091259.
Kelestimur, F. 2021. “Antibodies Against the Pituitary and Hypothalamus in Boxers.” Handbook of Clinical Neurology 181: 187–191. https://doi.org/10.1016/B978‐0‐12‐820683‐6.00014‐2.
Kim, M.‐H., and H. Kim. 2017. “The Roles of Glutamine in the Intestine and Its Implication in Intestinal Diseases.” International Journal of Molecular Sciences 18: 1051. https://doi.org/10.3390/ijms18051051.
Krueger, E. S., T. S. Lloyd, and J. S. Tessem. 2021. “The Accumulation and Molecular Effects of Trimethylamine N‐Oxide on Metabolic Tissues: It's Not all Bad.” Nutrients 13, no. 8: 2873. https://doi.org/10.3390/nu13082873.
Kurtz, P., and E. E. M. Rocha. 2020. “Nutrition Therapy, Glucose Control, and Brain Metabolism in Traumatic Brain Injury: A Multimodal Monitoring Approach.” Frontiers in Neuroscience 14: 190. https://doi.org/10.3389/fnins.2020.00190.
Lawrence, S., and R. H. Scofield. 2024. “Post Traumatic Stress Disorder Associated Hypothalamic‐Pituitary‐Adrenal Axis Dysregulation and Physical Illness.” Brain, Behavior, & Immunity‐Health 41: 100849. https://doi.org/10.1016/j.bbih.2024.100849.
Leigh, S.‐J., F. Uhlig, L. Wilmes, et al. 2023. “The Impact of Acute and Chronic Stress on Gastrointestinal Physiology and Function: A Microbiota‐Gut‐Brain Axis Perspective.” Journal of Physiology 601: 4491–4538. https://doi.org/10.1113/JP281951.
Leistner, C., and A. Menke. 2020. “Chapter 4: Hypothalamic–Pituitary–Adrenal Axis and Stress.” In Handbook of Clinical Neurology, Sex Differences in Neurology and Psychiatry, edited by R. Lanzenberger, G. S. Kranz, and I. Savic, 55–64. Elsevier. https://doi.org/10.1016/B978‐0‐444‐64123‐6.00004‐7.
Li, M., and S. Sirko. 2018. “Traumatic Brain Injury: At the Crossroads of Neuropathology and Common Metabolic Endocrinopathies.” Journal of Clinical Medicine 7: 59. https://doi.org/10.3390/jcm7030059.
Lim, T. Y., R. L. Poole, and N. M. Pageler. 2014. “Propylene Glycol Toxicity in Children.” Journal of Pediatric Pharmacology and Therapeutics 19: 277–282. https://doi.org/10.5863/1551‐6776‐19.4.277.
Liu, J., P. H. Bisschop, L. Eggels, et al. 2012. “Intrahypothalamic Estradiol Modulates Hypothalamus‐Pituitary‐Adrenal‐Axis Activity in Female Rats.” Endocrinology 153: 3337–3344. https://doi.org/10.1210/en.2011‐2176.
Liu, Y., and M. Dai. 2020. “Trimethylamine N‐Oxide Generated by the Gut Microbiota Is Associated With Vascular Inflammation: New Insights Into Atherosclerosis.” Mediators of Inflammation 2020: 4634172. https://doi.org/10.1155/2020/4634172.
Manninen, A. H. 2004. “Metabolic Effects of the Very‐Low‐Carbohydrate Diets: Misunderstood “Villains” of Human Metabolism.” Journal of the International Society of Sports Nutrition 1: 7–11. https://doi.org/10.1186/1550‐2783‐1‐2‐7.
McDonald, S. J., J. M. Sharkey, M. Sun, et al. 2020. “Beyond the Brain: Peripheral Interactions After Traumatic Brain Injury.” Journal of Neurotrauma 37: 770–781. https://doi.org/10.1089/neu.2019.6885.
Mercado, N. M., G. Zhang, Z. Ying, and F. Gómez‐Pinilla. 2022. “Traumatic Brain Injury Alters the Gut‐Derived Serotonergic System and Associated Peripheral Organs.” Biochimica et Biophysica Acta‐Molecular Basis of Disease 1868: 166491. https://doi.org/10.1016/j.bbadis.2022.166491.
Mitchell, S. C., and A. Q. Zhang. 2001. “Methylamine in Human Urine.” Clinica Chimica Acta 312: 107–114. https://doi.org/10.1016/s0009‐8981(01)00608‐8.
Moffett, J. R., N. Puthillathu, R. Vengilote, D. M. Jaworski, and A. M. Namboodiri. 2020. “Acetate Revisited: A Key Biomolecule at the Nexus of Metabolism, Epigenetics, and Oncogenesis—Part 2: Acetate and ACSS2 in Health and Disease.” Frontiers in Physiology 11: 580171. https://doi.org/10.3389/fphys.2020.580171.
Morganti‐Kossmann, M. C., M. Rancan, P. F. Stahel, and T. Kossmann. 2002. “Inflammatory Response in Acute Traumatic Brain Injury: A Double‐Edged Sword.” Current Opinion in Critical Care 8: 101–105. https://doi.org/10.1097/00075198‐200204000‐00002.
Ng, S. Y., and A. Y. W. Lee. 2019. “Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets.” Frontiers in Cellular Neuroscience 13: 528. https://doi.org/10.3389/fncel.2019.00528.
Opeyemi, O. M., M. B. Rogers, B. A. Firek, et al. 2021. “Sustained Dysbiosis and Decreased Fecal Short‐Chain Fatty Acids After Traumatic Brain Injury and Impact on Neurologic Outcome.” Journal of Neurotrauma 38: 2610–2621. https://doi.org/10.1089/neu.2020.7506.
Paxinos, G., and C. Watson. 2006. The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition. Elsevier.
Qian, X., S. Droste, S. Lightman, J. Reul, and A. Linthorst. 2012. “Circadian and Ultradian Rhythms of Free Glucocorticoid Hormone Are Highly Synchronized Between the Blood, the Subcutaneous Tissue, and the Brain.” Endocrinology 153: 4346–4353. https://doi.org/10.1210/en.2012‐1484.
Robinson, M. D., D. J. McCarthy, and G. K. Smyth. 2010. “edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data.” Bioinformatics 26: 139–140. https://doi.org/10.1093/bioinformatics/btp616.
Rosin, S., K. Xia, M. A. Azcarate‐Peril, et al. 2021. “A Preliminary Study of Gut Microbiome Variation and HPA Axis Reactivity in Healthy Infants.” Psychoneuroendocrinology 124: 105046. https://doi.org/10.1016/j.psyneuen.2020.105046.
Sidorov, E., D. K. Sanghera, and J. K. P. Vanamala. 2019. “Biomarker for Ischemic Stroke Using Metabolome: A Clinician Perspective.” Journal of Stroke 21: 31–41. https://doi.org/10.5853/jos.2018.03454.
Stojanov, S., A. Berlec, and B. Štrukelj. 2020. “The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel Disease.” Microorganisms 8: 1715. https://doi.org/10.3390/microorganisms8111715.
Sudo, N. 2014. “Microbiome, HPA Axis and Production of Endocrine Hormones in the Gut.” Advances in Experimental Medicine and Biology 817: 177–194. https://doi.org/10.1007/978‐1‐4939‐0897‐4_8.
Sun, B., C. Hu, H. Fang, L. Zhu, N. Gao, and J. Zhu. 2015. “The Effects of Lactobacillus acidophilus on the Intestinal Smooth Muscle Contraction Through PKC/MLCK/MLC Signaling Pathway in TBI Mouse Model.” PLoS One 10: e0128214. https://doi.org/10.1371/journal.pone.0128214.
Tapp, Z. M., J. P. Godbout, and O. N. Kokiko‐Cochran. 2019. “A Tilted Axis: Maladaptive Inflammation and HPA Axis Dysfunction Contribute to Consequences of TBI.” Frontiers in Neurology 10: 345. https://doi.org/10.3389/fneur.2019.00345.
Taraskina, A., O. Ignatyeva, D. Lisovaya, et al. 2022. “Effects of Traumatic Brain Injury on the Gut Microbiota Composition and Serum Amino Acid Profile in Rats.” Cells 11: 1409. https://doi.org/10.3390/cells11091409.
Thomas, I., A. M. Dickens, J. P. Posti, et al. 2022. “Serum Metabolome Associated With Severity of Acute Traumatic Brain Injury.” Nature Communications 13: 2545. https://doi.org/10.1038/s41467‐022‐30227‐5.
Trivedi, R., A. R. Khan, P. Rana, et al. 2012. “Radiation‐Induced Early Changes in the Brain and Behavior: Serial Diffusion Tensor Imaging and Behavioral Evaluation After Graded Doses of Radiation.” Journal of Neuroscience Research 90: 2009–2019. https://doi.org/10.1002/jnr.23073.
Tsikas, D. 2020. “Urinary Dimethylamine (DMA) and Its Precursor Asymmetric Dimethylarginine (ADMA) in Clinical Medicine, in the Context of Nitric Oxide (NO) and Beyond.” Journal of Clinical Medicine 9: 1843. https://doi.org/10.3390/jcm9061843.
Van Hul, M., T. Le Roy, E. Prifti, et al. 2020. “From Correlation to Causality: The Case of Subdoligranulum.” Gut Microbes 12: 1–13. https://doi.org/10.1080/19490976.2020.1849998.
Velasquez, M. T., A. Ramezani, A. Manal, and D. S. Raj. 2016. “Trimethylamine N‐Oxide: The Good, the Bad and the Unknown.” Toxins (Basel) 8: 326. https://doi.org/10.3390/toxins8110326.
Vernocchi, P., F. Del Chierico, and L. Putignani. 2020. “Gut Microbiota Metabolism and Interaction With Food Components.” International Journal of Molecular Sciences 21: 3688. https://doi.org/10.3390/ijms21103688.
Vijapur, S. M., Z. Yang, D. J. Barton, et al. 2020. “Anti‐Pituitary and Anti‐Hypothalamus Autoantibody Associations With Inflammation and Persistent Hypogonadotropic Hypogonadism in Men With Traumatic Brain Injury.” Journal of Neurotrauma 37: 1609–1626. https://doi.org/10.1089/neu.2019.6780.
Wen, C., F. Li, L. Zhang, et al. 2019. “Taurine Is Involved in Energy Metabolism in Muscles, Adipose Tissue, and the Liver.” Molecular Nutrition & Food Research 63: e1800536. https://doi.org/10.1002/mnfr.201800536.
Wen, S., C. Wang, M. Gong, and L. Zhou. 2019. “An Overview of Energy and Metabolic Regulation.” Science China Life Sciences 62: 771–790. https://doi.org/10.1007/s11427‐018‐9371‐4.
Wright, E. S. 2016. “Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R.” R Journal 8: 352–359.
Xia, J., N. Psychogios, N. Young, and D. S. Wishart. 2009. “MetaboAnalyst: A Web Server for Metabolomic Data Analysis and Interpretation.” Nucleic Acids Research 37: W652–W660. https://doi.org/10.1093/nar/gkp356.
Zheng, L., Q. Pang, H. Xu, H. Guo, R. Liu, and T. Wang. 2022. “The Neurobiological Links Between Stress and Traumatic Brain Injury: A Review of Research to Date.” International Journal of Molecular Sciences 23: 9519. https://doi.org/10.3390/ijms23179519.
Zheng, Z., S. Wang, C. Wu, et al. 2022. “Gut Microbiota Dysbiosis After Traumatic Brain Injury Contributes to Persistent Microglial Activation Associated With Upregulated Lyz2 and Shifted Tryptophan Metabolic Phenotype.” Nutrients 14: 3467. https://doi.org/10.3390/nu14173467.
Grants
INM-324/Institute of Nuclear Medicine and Allied Sciences, Defense Research and Development Organization
EST/3009/JRF/2020/Institute of Nuclear Medicine and Allied Sciences, Defense Research and Development Organization