Yahong Cheng: Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
Chengcheng Gai: Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
Yijing Zhao: Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
Tingting Li: Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
Yan Song: Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
Qian Luo: Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
Danqing Xin: Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
Zige Jiang: Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
Wenqiang Chen: Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
Dexiang Liu: Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China. liudexiang@sdu.edu.cn.
Zhen Wang: Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China. wangzhen@sdu.edu.cn. ORCID
Hypoxic-ischemic (HI) brain damage poses a high risk of death or lifelong disability, yet effective treatments remain elusive. Here, we demonstrated that miR-100-5p levels in the lesioned cortex increased after HI insult in neonatal mice. Knockdown of miR-100-5p expression in the brain attenuated brain injury and promoted functional recovery, through inhibiting the cleaved-caspase-3 level, microglia activation, and the release of proinflammation cytokines following HI injury. Engineered extracellular vesicles (EVs) containing neuron-targeting rabies virus glycoprotein (RVG) and miR-100-5p antagonists (RVG-EVs-Antagomir) selectively targeted brain lesions and reduced miR-100-5p levels after intranasal delivery. Both pre- and post-HI administration showed therapeutic benefits. Mechanistically, we identified protein phosphatase 3 catalytic subunit alpha (Ppp3ca) as a novel candidate target gene of miR-100-5p, inhibiting c-Fos expression and neuronal apoptosis following HI insult. In conclusion, our non-invasive method using engineered EVs to deliver miR-100-5p antagomirs to the brain significantly improves functional recovery after HI injury by targeting Ppp3ca to suppress neuronal apoptosis.
Yang L, Dong Y, Wu C, Li Y, Guo Y, Yang B. Photobiomodulation preconditioning prevents cognitive impairment in a neonatal rat model of hypoxia-ischemia. J Biophotonics 2019, 12: e201800359.
[PMID: 30652418]
Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 2010, 86: 329–338.
[PMID: 20554402]
Douglas-Escobar M, Weiss MD. Hypoxic-ischemic encephalopathy: A review for the clinician. JAMA Pediatr 2015, 169: 397–403.
[PMID: 25685948]
Schreglmann M, Ground A, Vollmer B, Johnson MJ. Systematic review: Long-term cognitive and behavioural outcomes of neonatal hypoxic-ischaemic encephalopathy in children without cerebral palsy. Acta Paediatr 2020, 109: 20–30.
[PMID: 31002422]
Motti D, Bixby JL, Lemmon VP. microRNAs and neuronal development. Semin Fetal Neonatal Med 2012, 17: 347–352.
[PMID: 22906916]
Wang L, Ke J, Li Y, Ma Q, Dasgupta C, Huang X, et al. Inhibition of miRNA-210 reverses nicotine-induced brain hypoxic-ischemic injury in neonatal rats. Int J Biol Sci 2017, 13: 76–84.
[PMID: 28123348]
Wallach T, Mossmann ZJ, Szczepek M, Wetzel M, Machado R, Raden M, et al. microRNA-100-5p and microRNA-298-5p released from apoptotic cortical neurons are endogenous Toll-like receptor 7/8 ligands that contribute to neurodegeneration. Mol Neurodegener 2021, 16: 80.
[PMID: 34838071]
Luo H, Huang F, Huang Z, Huang H, Liu C, Feng Y, et al. microRNA-93 packaged in extracellular vesicles from mesenchymal stem cells reduce neonatal hypoxic-ischemic brain injury. Brain Res 2022, 1794: 148042.
[PMID: 35952773]
Shen M, Zheng R, Kan X. Neuroprotection of bone marrow-derived mesenchymal stem cell-derived extracellular vesicle-enclosed miR-410 correlates with HDAC4 knockdown in hypoxic-ischemic brain damage. Neurochem Res 2022, 47: 3150–3166.
[PMID: 36028735]
Lakhal S, Wood MJA. Exosome nanotechnology: An emerging paradigm shift in drug delivery: Exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. Bioessays 2011, 33: 737–741.
[PMID: 21932222]
Min W, Wu Y, Fang Y, Hong B, Dai D, Zhou Y, et al. Bone marrow mesenchymal stem cells-derived exosomal microRNA-124-3p attenuates hypoxic-ischemic brain damage through depressing tumor necrosis factor receptor associated factor 6 in newborn rats. Bioengineered 2022, 13: 3194–3206.
[PMID: 35067167]
Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, et al. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles 2015, 4: 30087.
[PMID: 26725829]
Zhang ZG, Buller B, Chopp M. Exosomes—beyond stem cells for restorative therapy in stroke and neurological injury. Nat Rev Neurol 2019, 15: 193–203.
[PMID: 30700824]
Rufino-Ramos D, Albuquerque PR, Carmona V, Perfeito R, Nobre RJ, Pereira de Almeida L. Extracellular vesicles: Novel promising delivery systems for therapy of brain diseases. J Control Release 2017, 262: 247–258.
[PMID: 28687495]
Chen JJ, Zhao B, Zhao J, Li S. Potential roles of exosomal microRNAs as diagnostic biomarkers and therapeutic application in Alzheimer’s disease. Neural Plast 2017, 2017: 7027380.
[PMID: 28770113]
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011, 29: 341–345.
[PMID: 21423189]
Vannucci RC, Vannucci SJ. A model of perinatal hypoxic-ischemic brain damage. Ann N Y Acad Sci 1997, 835: 234–249.
[PMID: 9616778]
Ovcjak A, Xiao A, Kim JS, Xu B, Szeto V, Turlova E, et al. Ryanodine receptor inhibitor dantrolene reduces hypoxic-ischemic brain injury in neonatal mice. Exp Neurol 2022, 351: 113985.
[PMID: 35063438]
Xin D, Chu X, Bai X, Ma W, Yuan H, Qiu J, et al. L-Cysteine suppresses hypoxia-ischemia injury in neonatal mice by reducing glial activation, promoting autophagic flux and mediating synaptic modification via HS formation. Brain Behav Immun 2018, 73: 222–234.
[PMID: 29751053]
Xin D, Li T, Chu X, Ke H, Liu D, Wang Z. MSCs-extracellular vesicles attenuated neuroinflammation, synapse damage and microglial phagocytosis after hypoxia-ischemia injury by preventing osteopontin expression. Pharmacol Res 2021, 164: 105322.
[PMID: 33279596]
Gai C, Xing X, Song Y, Zhao Y, Jiang Z, Cheng Y, et al. Up-regulation of miR-9-5p inhibits hypoxia-ischemia brain damage through the DDIT4-mediated autophagy pathways in neonatal mice. Drug Des Devel Ther 2023, 17: 1175–1189.
[PMID: 37113470]
Bao J, Zhang X, Zhao X. MR imaging and outcome in neonatal HIBD models are correlated with sex: The value of diffusion tensor MR imaging and diffusion kurtosis MR imaging. Front Neurosci 2023, 17: 1234049.
[PMID: 37790588]
Muntsant A, Shrivastava K, Recasens M, Giménez-Llort L. Severe perinatal hypoxic-ischemic brain injury induces long-term sensorimotor deficits, anxiety-like behaviors and cognitive impairment in a sex-, age- and task-selective manner in C57BL/6 mice but can be modulated by neonatal handling. Front Behav Neurosci 2019, 13: 7.
[PMID: 30814939]
Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol 2006, 169: 566–583.
[PMID: 16877357]
Zhang Y, Zhao X, Guo C, Zhang Y, Zeng F, Yin Q, et al. The circadian system is essential for the crosstalk of VEGF-Notch-mediated endothelial angiogenesis in ischemic stroke. Neurosci Bull 2023, 39: 1375–1395.
[PMID: 36862341]
Haroon K, Ruan H, Zheng H, Wu S, Liu Z, Shi X, et al. Bio-clickable, small extracellular vesicles-COCKTAIL therapy for ischemic stroke. J Control Release 2023, 363: 585–596.
[PMID: 37793483]
Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007, 448: 39–43.
[PMID: 17572664]
Langfermann DS, Schmidt T, Rössler OG, Thiel G. Calcineurin controls gene transcription following stimulation of a Gαq-coupled designer receptor. Exp Cell Res 2019, 383: 111553.
[PMID: 31415762]
Cao X, Zhang X, Chen J, Sun Q, Sun Y, Lin N, et al. miR-100-5p activation of the autophagy response through inhibiting the mTOR pathway and suppression of cerebral infarction progression in mice. Aging (Albany NY) 2023, 15: 8315–8324.
[PMID: 37610710]
Xin D, Li T, Zhao Y, Guo X, Gai C, Jiang Z, et al. miR-100-5p-rich small extracellular vesicles from activated neuron to aggravate microglial activation and neuronal activity after stroke. J Nanobiotechnology 2024, 22: 534.
[PMID: 39227960]
Long Y, Yang Q, Xiang Y, Zhang Y, Wan J, Liu S, et al. Nose to brain drug delivery - A promising strategy for active components from herbal medicine for treating cerebral ischemia reperfusion. Pharmacol Res 2020, 159: 104795.
[PMID: 32278035]
Chen J, Chopp M. Exosome therapy for stroke. Stroke 2018, 49: 1083–1090.
[PMID: 29669873]
Yang J, Zhang X, Chen X, Wang L, Yang G. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids 2017, 7: 278–287.
[PMID: 28624203]
Haroon K, Zheng H, Wu S, Liu Z, Tang Y, Yang GY, et al. Engineered exosomes mediated targeted delivery of neuroprotective peptide NR2B9c for the treatment of traumatic brain injury. Int J Pharm 2024, 649: 123656.
[PMID: 38040392]
Yu L, Wen H, Liu C, Wang C, Yu H, Zhang K, et al. Embryonic stem cell-derived extracellular vesicles rejuvenate senescent cells and antagonize aging in mice. Bioact Mater 2023, 29: 85–97.
[PMID: 37449253]
Wang C, Feng L, Zhu L, Wu L, Chen B, Cui C, et al. Cerebral endothelial cell-derived extracellular vesicles regulate microglial polarization and promote autophagy via delivery of miR-672-5p. Cell Death Dis 2023, 14: 643.
[PMID: 37773169]
Rufino-Ramos D, Albuquerque PR, Leandro K, Carmona V, Martins IM, Fernandes R, et al. Extracellular vesicle-based delivery of silencing sequences for the treatment of Machado-Joseph disease/spinocerebellar Ataxia type 3. Mol Ther 2023, 31: 1275–1292.
[PMID: 37025062]
Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 2013, 335: 201–204.
[PMID: 23419525]
Haraszti RA, Miller R, Didiot MC, Biscans A, Alterman JF, Hassler MR, et al. Optimized cholesterol-siRNA chemistry improves productive loading onto extracellular vesicles. Mol Ther 2018, 26: 1973–1982.
[PMID: 29937418]
Lamichhane TN, Jeyaram A, Patel DB, Parajuli B, Livingston NK, Arumugasaamy N, et al. Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. Cell Mol Bioeng 2016, 9: 315–324.
[PMID: 27800035]
Yang L, Han B, Zhang Z, Wang S, Bai Y, Zhang Y, et al. Extracellular vesicle-mediated delivery of circular RNA SCMH1 promotes functional recovery in rodent and nonhuman primate ischemic stroke models. Circulation 2020, 142: 556–574.
[PMID: 32441115]
Klee CB, Crouch TH, Krinks MH. Calcineurin: A calcium- and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci USA 1979, 76: 6270–6273.
[PMID: 293720]
Fernandez AM, Fernandez S, Carrero P, Garcia-Garcia M, Torres-Aleman I. Calcineurin in reactive astrocytes plays a key role in the interplay between proinflammatory and anti-inflammatory signals. J Neurosci 2007, 27: 8745–8756.
[PMID: 17699657]
Pfuhlmann K, Schriever SC, Legutko B, Baumann P, Harrison L, Kabra DG, et al. Calcineurin A beta deficiency ameliorates HFD-induced hypothalamic astrocytosis in mice. J Neuroinflammation 2018, 15: 35.
[PMID: 29422055]
Wen Y, Fu P, Wu K, Si K, Xie Y, Dan W, et al. Inhibition of calcineurin A by FK506 suppresses seizures and reduces the expression of GluN2B in membrane fraction. Neurochem Res 2017, 42: 2154–2166.
[PMID: 28299629]
Myara I, Lahiani F, Cosson C, Duboust A, Moatti N. Estimated creatinine clearance by the formula of Gault and Cockcroft in renal transplantation. Nephron 1989, 51: 426–427.
[PMID: 2645534]
Zawadzka M, Dabrowski M, Gozdz A, Szadujkis B, Sliwa M, Lipko M, et al. Early steps of microglial activation are directly affected by neuroprotectant FK506 in both in vitro inflammation and in rat model of stroke. J Mol Med (Berl) 2012, 90: 1459–1471.
[PMID: 22806180]
Rozkalne A, Hyman BT, Spires-Jones TL. Calcineurin inhibition with FK506 ameliorates dendritic spine density deficits in plaque-bearing Alzheimer model mice. Neurobiol Dis 2011, 41: 650–654.
[PMID: 21134458]
Quintanilla RA, Jin YN, von Bernhardi R, Johnson GVW. Mitochondrial permeability transition pore induces mitochondria injury in Huntington disease. Mol Neurodegener 2013, 8: 45.
[PMID: 24330821]
Rydzanicz M, Wachowska M, Cook EC, Lisowski P, Kuźniewska B, Szymańska K, et al. Novel calcineurin A (PPP3CA) variant associated with epilepsy, constitutive enzyme activation and downregulation of protein expression. Eur J Hum Genet 2019, 27: 61–69.
[PMID: 30254215]
Yang Z, Gao Z, Yang Z, Zhang Y, Chen H, Yang X, et al. Lactobacillus plantarum-derived extracellular vesicles protect against ischemic brain injury via the microRNA-101a-3p/c-Fos/TGF-β axis. Pharmacol Res 2022, 182: 106332.
[PMID: 35779817]
Chen X, Shen J, Wang Y, Chen X, Yu S, Shi H, et al. Up-regulation of c-Fos associated with neuronal apoptosis following intracerebral hemorrhage. Cell Mol Neurobiol 2015, 35: 363–376.
[PMID: 25354492]