Effect of the Carbon-Curved Cane Use on Gait in Chronic Stroke-Induced Hemiplegia: A Prospective Single-Case Study.

Ryu Kokuwa, Yuta Sakai, Yosuke Nagasaka, Yuki Iwama, Kazune Matsubara, Yuuma Ueno, Seiichi Matsushita, Junpei Ishikawa
Author Information
  1. Ryu Kokuwa: Syupoon Inc., 43, Nishimaeshinden, Uguiura-Cho, Yatomi, Aichi 498-0026, Japan. ORCID
  2. Yuta Sakai: Syupoon Inc., 43, Nishimaeshinden, Uguiura-Cho, Yatomi, Aichi 498-0026, Japan.
  3. Yosuke Nagasaka: Nagoya Municipal Industrial Research Institute, 3-4-41, Rokuban, Atsuta, Nagoya, Aichi, Japan.
  4. Yuki Iwama: Nagoya Municipal Industrial Research Institute, 3-4-41, Rokuban, Atsuta, Nagoya, Aichi, Japan.
  5. Kazune Matsubara: Nagoya Municipal Industrial Research Institute, 3-4-41, Rokuban, Atsuta, Nagoya, Aichi, Japan.
  6. Yuuma Ueno: Nagoya Municipal Industrial Research Institute, 3-4-41, Rokuban, Atsuta, Nagoya, Aichi, Japan.
  7. Seiichi Matsushita: Nagoya Municipal Industrial Research Institute, 3-4-41, Rokuban, Atsuta, Nagoya, Aichi, Japan.
  8. Junpei Ishikawa: Department of Paracane, Welloop Inc., 43, Nishimaeshinden, Uguiura-Cho, Yatomi, Aichi 498-0026, Japan.

Abstract

Canes are used by patients with hemiplegia to improve gait and ambulation, but the effects of different types of canes remain unclear. Therefore, this study compared the effectiveness of a newly developed carbon-curved cane (CC-C) with that of a conventional cane using gait analysis of patients with chronic stroke-induced hemiplegia. A 41-year-old male was diagnosed with cardiogenic cerebral infarction 3 years ago. The patient is independent in his activities of daily living and participates alone in the community using a single-point cane (SP-C). This study utilized an AB design with two conditions: the use of an SP-C and a CC-C. Gait evaluation included a three-dimensional gait analysis and analysis of the ground reaction force (GRF) applied to the cane using a force plate. The main outcomes were the spatiotemporal gait characteristics, and the suboutcomes were range of motion (ROM), center of mass (COM) trajectory, and GRF applied to the cane. Wilcoxon rank-sum test was performed to clarify the difference between SP-C and CC-C use with a significance level of =0.05. Gait velocity, paretic and nonparetic step length, stride length, cadence, and single-stance time tended to be higher, and the preswing time was lower with CC-C than with SP-C use ( < 0.05). Differences were observed in limb ROM and COM trajectory ( < 0.05) with GRF tending to have a higher propulsion force in CC-C and SP-C having higher braking and medial forces. CC-C improved gait and demonstrated different GRF values than SP-C.

References

  1. Top Stroke Rehabil. 2015 Oct;22(5):349-56 [PMID: 25906834]
  2. Physiotherapy. 2016 Dec;102(4):351-356 [PMID: 27156703]
  3. J Am Geriatr Soc. 1991 Feb;39(2):142-8 [PMID: 1991946]
  4. Assist Technol. 1996;8(1):3-13 [PMID: 10159726]
  5. Arch Phys Med Rehabil. 2007 Jan;88(1):43-9 [PMID: 17207674]
  6. J Neuroeng Rehabil. 2015 Apr 18;12:40 [PMID: 25898145]
  7. Gait Posture. 2013 Jun;38(2):165-9 [PMID: 23755883]
  8. Arch Phys Med Rehabil. 2009 Mar;90(3):475-9 [PMID: 19254614]
  9. Top Stroke Rehabil. 2018 Dec;25(8):548-553 [PMID: 30209977]
  10. J Neuroeng Rehabil. 2020 Oct 21;17(1):139 [PMID: 33087137]
  11. Physiother Theory Pract. 2020 Dec;36(12):1348-1353 [PMID: 30704332]
  12. Int J Rehabil Res. 2020 Mar;43(1):69-75 [PMID: 31855899]
  13. BMC Neurol. 2018 Sep 13;18(1):141 [PMID: 30213258]
  14. Physiother Can. 2009 Summer;61(3):154-60 [PMID: 20514177]
  15. Gait Posture. 2012 Apr;35(4):590-4 [PMID: 22300728]
  16. J Neuroeng Rehabil. 2015 Feb 27;12:24 [PMID: 25889030]
  17. Stroke. 2016 Jun;47(6):e98-e169 [PMID: 27145936]
  18. J Biomech. 2016 Feb 8;49(3):388-95 [PMID: 26776931]
  19. J Orthop Sci. 2007 Nov;12(6):550-4 [PMID: 18040637]
  20. Top Stroke Rehabil. 2020 May;27(4):251-261 [PMID: 31752634]
  21. Top Stroke Rehabil. 2021 Mar;28(2):96-103 [PMID: 32588758]
  22. Neurorehabil Neural Repair. 2011 Mar-Apr;25(3):253-8 [PMID: 21041500]
  23. Stroke. 2017 Feb;48(2):406-411 [PMID: 28057807]
  24. Braz J Med Biol Res. 2012 Jun;45(6):537-45 [PMID: 22473324]
  25. J Vis Exp. 2018 Mar 4;(133): [PMID: 29553535]
  26. Gait Posture. 2015 Feb;41(2):493-8 [PMID: 25533049]
  27. Clin Biomech (Bristol). 2012 Feb;27(2):131-7 [PMID: 21889240]
  28. Arch Phys Med Rehabil. 2001 Jan;82(1):43-8 [PMID: 11239285]
  29. Clin Interv Aging. 2017 Dec 01;12:2055-2062 [PMID: 29238181]
  30. Clin Biomech (Bristol). 1995 Jun;10(4):171-178 [PMID: 11415549]
  31. Proc Biol Sci. 2009 Oct 22;276(1673):3679-88 [PMID: 19640879]
  32. Front Physiol. 2018 Aug 02;9:1021 [PMID: 30127749]
  33. Arch Phys Med Rehabil. 1999 Jul;80(7):777-84 [PMID: 10414762]
  34. Acta Bioeng Biomech. 2017;19(3):147-154 [PMID: 29205208]
  35. Stroke. 2006 Mar;37(3):872-6 [PMID: 16456121]
  36. Braz J Phys Ther. 2018 Mar - Apr;22(2):168-173 [PMID: 29246455]
  37. Med Sci Sports Exerc. 2006 Jun;38(6):1041-6 [PMID: 16775542]
  38. Biomed Res Int. 2020 Jun 02;2020:6157231 [PMID: 32596338]

Word Cloud

Created with Highcharts 10.0.0CC-CSP-CgaitcaneGRFusinganalysisuseGaitforce05higherpatientshemiplegiadifferentstudyappliedROMCOMtrajectorylengthtime<0CanesusedimproveambulationeffectstypescanesremainunclearThereforecomparedeffectivenessnewlydevelopedcarbon-curvedconventionalchronicstroke-induced41-year-oldmalediagnosedcardiogeniccerebralinfarction3 yearsagopatientindependentactivitiesdailylivingparticipatesalonecommunitysingle-pointutilizedABdesigntwoconditions:evaluationincludedthree-dimensionalgroundreactionplatemainoutcomesspatiotemporalcharacteristicssuboutcomesrangemotioncentermassWilcoxonrank-sumtestperformedclarifydifferencesignificancelevel=0velocitypareticnonpareticstepstridecadencesingle-stancetendedpreswinglowerDifferencesobservedlimbtendingpropulsionbrakingmedialforcesimproveddemonstratedvaluesEffectCarbon-CurvedCaneUseChronicStroke-InducedHemiplegia:ProspectiveSingle-CaseStudy

Similar Articles

Cited By