Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase.

Dayong Li, Zhiyuan Huang, Shuhui Song, Yeyun Xin, Donghai Mao, Qiming Lv, Ming Zhou, Dongmei Tian, Mingfeng Tang, Qi Wu, Xue Liu, Tingting Chen, Xianwei Song, Xiqin Fu, Bingran Zhao, Chengzhi Liang, Aihong Li, Guozhen Liu, Shigui Li, Songnian Hu, Xiaofeng Cao, Jun Yu, Longping Yuan, Caiyan Chen, Lihuang Zhu
Author Information
  1. Dayong Li: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
  2. Zhiyuan Huang: State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China.
  3. Shuhui Song: BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; lhzhu@genetics.ac.cn cychen@isa.ac.cn lpyuan@hhrrc.ac.cn songshh@big.ac.cn xinyeyun@hhrrc.ac.cn.
  4. Yeyun Xin: State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; lhzhu@genetics.ac.cn cychen@isa.ac.cn lpyuan@hhrrc.ac.cn songshh@big.ac.cn xinyeyun@hhrrc.ac.cn.
  5. Donghai Mao: Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
  6. Qiming Lv: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China.
  7. Ming Zhou: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
  8. Dongmei Tian: BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
  9. Mingfeng Tang: Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
  10. Qi Wu: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
  11. Xue Liu: Chinese Academy of Sciences Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
  12. Tingting Chen: BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
  13. Xianwei Song: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
  14. Xiqin Fu: State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China.
  15. Bingran Zhao: State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China.
  16. Chengzhi Liang: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
  17. Aihong Li: Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China.
  18. Guozhen Liu: College of Life Sciences, Hebei Agricultural University, Baoding 071001, China.
  19. Shigui Li: Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
  20. Songnian Hu: Chinese Academy of Sciences Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
  21. Xiaofeng Cao: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
  22. Jun Yu: Chinese Academy of Sciences Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
  23. Longping Yuan: State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; lhzhu@genetics.ac.cn cychen@isa.ac.cn lpyuan@hhrrc.ac.cn songshh@big.ac.cn xinyeyun@hhrrc.ac.cn.
  24. Caiyan Chen: Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; lhzhu@genetics.ac.cn cychen@isa.ac.cn lpyuan@hhrrc.ac.cn songshh@big.ac.cn xinyeyun@hhrrc.ac.cn.
  25. Lihuang Zhu: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; lhzhu@genetics.ac.cn cychen@isa.ac.cn lpyuan@hhrrc.ac.cn songshh@big.ac.cn xinyeyun@hhrrc.ac.cn.

Abstract

Hybrid rice is the dominant form of rice planted in China, and its use has extended worldwide since the 1970s. It offers great yield advantages and has contributed greatly to the world's food security. However, the molecular mechanisms underlying heterosis have remained a mystery. In this study we integrated genetics and omics analyses to determine the candidate genes for yield heterosis in a model two-line rice hybrid system, Liang-you-pei 9 (LYP9) and its parents. Phenomics study revealed that the better parent heterosis (BPH) of yield in hybrid is not ascribed to BPH of all the yield components but is specific to the BPH of spikelet number per panicle (SPP) and paternal parent heterosis (PPH) of effective panicle number (EPN). Genetic analyses then identified multiple quantitative trait loci (QTLs) for these two components. Moreover, a number of differentially expressed genes and alleles in the hybrid were mapped by transcriptome profiling to the QTL regions as possible candidate genes. In parallel, a major QTL for yield heterosis, rice heterosis 8 (RH8), was found to be the DTH8/Ghd8/LHD1 gene. Based on the shared allelic heterozygosity of RH8 in many hybrid rice cultivars, a common mechanism for yield heterosis in the present commercial hybrid rice is proposed.

Keywords

References

  1. Nucleic Acids Res. 2013 Jan;41(Database issue):D1199-205 [PMID: 23193278]
  2. Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15847-52 [PMID: 23019369]
  3. Genetics. 1917 Sep;2(5):466-79 [PMID: 17245892]
  4. Nat Commun. 2015 Feb 05;6:6258 [PMID: 25651972]
  5. Trends Plant Sci. 2010 Feb;15(2):57-71 [PMID: 20080432]
  6. Mol Plant. 2015 Oct 5;8(10):1455-65 [PMID: 26187814]
  7. Nat Genet. 2008 Jun;40(6):761-7 [PMID: 18454147]
  8. Trends Genet. 2007 Feb;23(2):60-6 [PMID: 17188398]
  9. Nat Genet. 2010 May;42(5):459-63 [PMID: 20348958]
  10. PLoS One. 2014 Mar 25;9(3):e93122 [PMID: 24667442]
  11. Plant Physiol. 2010 Aug;153(4):1747-58 [PMID: 20566706]
  12. Plant Cell. 2010 Apr;22(4):1057-73 [PMID: 20400678]
  13. J Integr Plant Biol. 2012 Oct;54(10):790-9 [PMID: 22963226]
  14. Plant J. 2012 Aug;71(4):669-83 [PMID: 22487254]
  15. Science. 2002 Apr 5;296(5565):79-92 [PMID: 11935017]
  16. Genetics. 1936 Jul;21(4):375-97 [PMID: 17246801]
  17. Biochem Biophys Res Commun. 2007 Aug 17;360(1):251-6 [PMID: 17592727]
  18. Curr Opin Plant Biol. 2011 Feb;14(1):45-52 [PMID: 20864385]
  19. Plant Physiol. 2014 Sep;166(1):265-80 [PMID: 25073707]
  20. Plant Physiol. 2015 Aug;168(4):1197-205 [PMID: 26002907]
  21. BMC Plant Biol. 2013 Dec 21;13:221 [PMID: 24358981]
  22. Mol Plant. 2011 Mar;4(2):319-30 [PMID: 21148627]
  23. Genetics. 1992 Jun;131(2):461-9 [PMID: 1644280]
  24. J Plant Physiol. 2008 May 26;165(8):876-85 [PMID: 17913295]
  25. Nature. 2009 Jan 15;457(7227):327-31 [PMID: 19029881]
  26. Science. 1910 Nov 4;32(827):627-8 [PMID: 17816706]
  27. Mol Genet Genomics. 2005 Mar;273(1):1-9 [PMID: 15682279]
  28. G3 (Bethesda). 2011 Dec;1(7):571-9 [PMID: 22384368]
  29. Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):12981-6 [PMID: 16938842]
  30. Proc Natl Acad Sci U S A. 2012 May 1;109(18):7109-14 [PMID: 22493265]
  31. Nat Plants. 2015 Dec 21;2:15203 [PMID: 27250749]
  32. Genetics. 1995 Jun;140(2):745-54 [PMID: 7498751]
  33. Nat Plants. 2015 Mar 03;1:15020 [PMID: 27246887]
  34. Nat Plants. 2015 Jul 06;1:15092 [PMID: 27250257]
  35. Nat Plants. 2015 Dec 21;2:15195 [PMID: 27250747]
  36. Nat Genet. 2012 Jan 15;44(2):217-20 [PMID: 22246502]
  37. Proc Natl Acad Sci U S A. 2009 May 12;106(19):7695-701 [PMID: 19372371]
  38. New Phytol. 2015 Dec;208(4):1056-66 [PMID: 26147403]
  39. Plant Sci. 2016 Apr;245:128-34 [PMID: 26940497]
  40. Genetics. 2001 Aug;158(4):1737-53 [PMID: 11514459]
  41. Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14492-7 [PMID: 23940322]

MeSH Term

Alleles
Chromosome Mapping
Gene Expression Profiling
Gene Expression Regulation, Plant
Genes, Plant
Genetic Linkage
Genome, Plant
Genomics
Genotype
Hybrid Vigor
Hybridization, Genetic
Oryza
Phenotype
Polymorphism, Single Nucleotide
Quantitative Trait Loci
Quantitative Trait, Heritable
Transcriptome

Word Cloud

Created with Highcharts 10.0.0riceyieldheterosishybridgenesBPHnumberQTLRH8studyanalysescandidateparentcomponentspaniclemultiplelocitranscriptomeHybriddominantformplantedChinauseextendedworldwidesince1970soffersgreatadvantagescontributedgreatlyworld'sfoodsecurityHowevermolecularmechanismsunderlyingremainedmysteryintegratedgeneticsomicsdeterminemodeltwo-linesystemLiang-you-pei9LYP9parentsPhenomicsrevealedbetterascribedspecificspikeletperSPPpaternalPPHeffectiveEPNGeneticidentifiedquantitativetraitQTLstwoMoreoverdifferentiallyexpressedallelesmappedprofilingregionspossibleparallelmajor8foundDTH8/Ghd8/LHD1geneBasedsharedallelicheterozygositymanycultivarscommonmechanismpresentcommercialproposedIntegratedanalysisphenomegenomeuncoveredheterosis-relatedincrease

Similar Articles

Cited By (71)