Spatial transcriptomic survey of human embryonic cerebral cortex by single-cell RNA-seq analysis.

Xiaoying Fan, Ji Dong, Suijuan Zhong, Yuan Wei, Qian Wu, Liying Yan, Jun Yong, Le Sun, Xiaoye Wang, Yangyu Zhao, Wei Wang, Jie Yan, Xiaoqun Wang, Jie Qiao, Fuchou Tang
Author Information
  1. Xiaoying Fan: Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.
  2. Ji Dong: Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.
  3. Suijuan Zhong: State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology; Institute of Brain-Intelligence Science and Technology Zhangjiang Laboratory (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
  4. Yuan Wei: Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.
  5. Qian Wu: State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology; Institute of Brain-Intelligence Science and Technology Zhangjiang Laboratory (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
  6. Liying Yan: Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.
  7. Jun Yong: Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.
  8. Le Sun: State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology; Institute of Brain-Intelligence Science and Technology Zhangjiang Laboratory (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
  9. Xiaoye Wang: Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.
  10. Yangyu Zhao: Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.
  11. Wei Wang: Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.
  12. Jie Yan: Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.
  13. Xiaoqun Wang: State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology; Institute of Brain-Intelligence Science and Technology Zhangjiang Laboratory (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. xiaoqunwang@ibp.ac.cn.
  14. Jie Qiao: Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China. jie.qiao@263.net. ORCID
  15. Fuchou Tang: Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China. tangfuchou@pku.edu.cn. ORCID

Abstract

The cellular complexity of human brain development has been intensively investigated, although a regional characterization of the entire human cerebral cortex based on single-cell transcriptome analysis has not been reported. Here, we performed RNA-seq on over 4,000 individual cells from 22 brain regions of human mid-gestation embryos. We identified 29 cell sub-clusters, which showed different proportions in each region and the pons showed especially high percentage of astrocytes. Embryonic neurons were not as diverse as adult neurons, although they possessed important features of their destinies in adults. Neuron development was unsynchronized in the cerebral cortex, as dorsal regions appeared to be more mature than ventral regions at this stage. Region-specific genes were comprehensively identified in each neuronal sub-cluster, and a large proportion of these genes were neural disease related. Our results present a systematic landscape of the regionalized gene expression and neuron maturation of the human cerebral cortex.

References

  1. Sci Rep. 2016 Jan 20;6:19274 [PMID: 26786896]
  2. Nat Methods. 2017 Nov;14(11):1083-1086 [PMID: 28991892]
  3. Curr Biol. 2007 Jun 19;17(12):R443-9 [PMID: 17580069]
  4. Curr Biol. 2004 Jul 13;14(13):R497-500 [PMID: 15242626]
  5. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  6. Nat Neurosci. 2015 Jan;18(1):145-53 [PMID: 25420068]
  7. Science. 1998 Nov 20;282(5393):1504-8 [PMID: 9822384]
  8. Nature. 2011 Oct 26;478(7370):483-9 [PMID: 22031440]
  9. Glia. 2014 Sep;62(9):1377-91 [PMID: 24807023]
  10. Nat Methods. 2017 Mar;14(3):309-315 [PMID: 28114287]
  11. J Neurosci. 2012 Feb 29;32(9):2988-97 [PMID: 22378872]
  12. Nature. 2011 Apr 21;472(7343):351-5 [PMID: 21460837]
  13. Mol Autism. 2015 May 16;6:28 [PMID: 26000162]
  14. Science. 2016 Jun 24;352(6293):1586-90 [PMID: 27339989]
  15. Front Cell Neurosci. 2015 Mar 20;9:76 [PMID: 25852472]
  16. BMC Dev Biol. 2015 Nov 06;15:40 [PMID: 26545946]
  17. NPJ Parkinsons Dis. 2017 Jun 26;3:21 [PMID: 28685157]
  18. Nat Rev Neurosci. 2007 Jun;8(6):466-79 [PMID: 17514199]
  19. Science. 2012 Sep 14;337(6100):1301-3 [PMID: 22984058]
  20. Nat Neurosci. 2015 May;18(5):637-46 [PMID: 25734491]
  21. Nat Biotechnol. 2014 Apr;32(4):381-386 [PMID: 24658644]
  22. Nat Biotechnol. 2014 Oct;32(10):1053-8 [PMID: 25086649]
  23. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  24. Nature. 2014 Apr 10;508(7495):199-206 [PMID: 24695229]
  25. Cell. 2012 Apr 13;149(2):483-96 [PMID: 22500809]
  26. Front Cell Neurosci. 2015 Jan 12;8:449 [PMID: 25628534]
  27. Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):6855-62 [PMID: 26034286]
  28. Neuropharmacology. 2016 Jan;100:56-65 [PMID: 26142252]
  29. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  30. Curr Opin Neurol. 2014 Apr;27(2):149-56 [PMID: 24565942]
  31. Cereb Cortex. 2006 Feb;16(2):200-11 [PMID: 15843627]
  32. Development. 2015 Nov 15;142(22):3805-9 [PMID: 26577203]
  33. Science. 2017 Dec 8;358(6368):1318-1323 [PMID: 29217575]
  34. Cereb Cortex. 2004 Dec;14(12):1408-20 [PMID: 15238450]
  35. Cell Stem Cell. 2017 Jun 1;20(6):858-873.e4 [PMID: 28457750]
  36. Nature. 2018 Mar 22;555(7697):524-528 [PMID: 29539641]
  37. Science. 2012 Aug 10;337(6095):746-9 [PMID: 22879516]
  38. Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7285-90 [PMID: 26060301]
  39. Trends Neurosci. 2006 Jun;29(6):307-16 [PMID: 16713635]
  40. Neuron. 2013 Feb 6;77(3):388-405 [PMID: 23395369]
  41. Nat Neurosci. 2016 Feb;19(2):335-46 [PMID: 26727548]
  42. Nature. 2016 Jul 13;535(7612):367-75 [PMID: 27409810]
  43. Nat Rev Neurosci. 2009 Dec;10(12):850-60 [PMID: 19927149]
  44. Cell Host Microbe. 2015 Dec 9;18(6):723-35 [PMID: 26651948]
  45. PLoS One. 2010 Sep 28;5(9):null [PMID: 20927193]
  46. J Neurochem. 2012 Apr;121(1):4-27 [PMID: 22251135]
  47. Nat Neurosci. 2013 Aug;16(8):1068-76 [PMID: 23817549]
  48. Nature. 2013 Nov 28;503(7477):521-4 [PMID: 24097352]
  49. Nat Neurosci. 2013 Nov;16(11):1576-87 [PMID: 24097039]
  50. Annu Rev Neurosci. 1991;14:453-501 [PMID: 2031577]
  51. Cell Death Dis. 2016 Dec 15;7(12):e2522 [PMID: 27977010]
  52. Genome Biol. 2016 Apr 27;17:75 [PMID: 27122128]
  53. Nat Biotechnol. 2018 Jun;36(5):421-427 [PMID: 29608177]
  54. J Cell Sci. 2006 Nov 1;119(Pt 21):4381-9 [PMID: 17074832]
  55. Front Cell Neurosci. 2015 Apr 28;9:149 [PMID: 25972784]
  56. Science. 2015 Mar 6;347(6226):1138-42 [PMID: 25700174]
  57. Neuron. 2009 Apr 16;62(1):53-71 [PMID: 19376067]
  58. Cell Res. 2016 Jan;26(1):83-102 [PMID: 26691752]
  59. Nat Neurosci. 2010 Sep;13(9):1098-106 [PMID: 20694002]
  60. Nature. 2014 Jan 16;505(7483):318-26 [PMID: 24429630]
  61. J Neurosci. 2011 May 4;31(18):6764-70 [PMID: 21543606]
  62. Nat Neurosci. 2016 Aug 26;19(9):1131-41 [PMID: 27571192]
  63. Cell. 1995 Jun 2;81(5):811-23 [PMID: 7774020]
  64. Nat Genet. 2007 Dec;39(12):1440-2 [PMID: 18026100]
  65. Nat Neurosci. 2013 Nov;16(11):1662-70 [PMID: 24097044]
  66. Cell. 2013 Nov 21;155(5):997-1007 [PMID: 24267886]
  67. Neuroimage. 2002 Sep;17(1):256-71 [PMID: 12482082]
  68. Elife. 2013 Dec 31;2:e01749 [PMID: 24381249]
  69. Nature. 2005 Feb 24;433(7028):868-73 [PMID: 15729343]
  70. Science. 2016 Apr 8;352(6282):189-96 [PMID: 27124452]
  71. Cell. 1989 Sep 8;58(5):815-21 [PMID: 2673533]
  72. Exp Neurol. 2016 Aug;282:9-18 [PMID: 27154297]
  73. Nucleic Acids Res. 1999 Jan 1;27(1):29-34 [PMID: 9847135]
  74. J Neurosci. 2007 May 9;27(19):5224-35 [PMID: 17494709]
  75. Nature. 2017 Jan 19;541(7637):365-370 [PMID: 28077877]
  76. Neuron. 2005 Oct 20;48(2):315-27 [PMID: 16242411]

MeSH Term

Astrocytes
Base Sequence
Cerebral Cortex
Embryonic Development
Female
Gene Expression Profiling
Humans
Male
Nervous System Diseases
Neurogenesis
Neurons
Pregnancy
Pregnancy Trimester, Second
Sequence Analysis, RNA
Single-Cell Analysis

Word Cloud

Similar Articles

Cited By