Ear-EEG-based sleep scoring in epilepsy: A comparison with scalp-EEG.

Sofie D Jørgensen, Ivan C Zibrandtsen, Troels W Kjaer
Author Information
  1. Sofie D Jørgensen: Neurological Department, Zealand University Hospital, Roskilde, Denmark. ORCID
  2. Ivan C Zibrandtsen: Neurological Department, Zealand University Hospital, Roskilde, Denmark. ORCID
  3. Troels W Kjaer: Neurological Department, Zealand University Hospital, Roskilde, Denmark. ORCID

Abstract

Ear-EEG is a wearable electroencephalogram-recording device. It relies on recording electrodes that are nested within a custom-fitted earpiece in the external ear canal. The concept has previously been tested for seizure detection in epileptic patients and for sleep recordings in a healthy population. This study is the first to examine the use of ear-EEG recordings for sleep staging in patients with epilepsy, comparing it with standard recordings from scalp-EEG. We use individuals with epilepsy because of their multiple sleep disturbances, and their complex relationship between seizures and sleep, which make this group very likely to benefit from wearable electroencephalogram devices for sleep if it were introduced in the clinic. The accuracy of the ear-EEG against that of the scalp-EEG is compared for sleep staging, and we evaluate features of sleep architecture in individuals with epilepsy. A mean kappa value of 0.74 is found for the agreement between hypnograms derived from ear-EEG and scalp-EEG. Furthermore, it was discovered that sleep stage transition frequency could be contributing to the kappa variation. These findings are related to other ear-recording systems in the literature, and the potentials and future obstacles of the device are discussed.

Keywords

References

  1. Bazil, C. W. (2017). Sleep and epilepsy. Seminars in Neurology, 37, 407-412. https://doi.org/10.1055/s-0037-1604352
  2. Bleichner, M. G., Lundbeck, M., Selisky, M., Minow, F., Jäger, M., Emkes, R., … De Voss, M. (2015). Exploring miniaturized EEG electrodes for brain-computer interfaces. An EEG you do not see? Physiological Reports, 3, e12362. https://doi.org/10.14814/phy2.12362
  3. Danker-Hopfe, H., Kunz, D., Gruber, G., Klösch, G., Lorenzo, J. L., Himanen, S. L., … Dorffner, G. (2004). Interrater reliability between scorers from eight European sleep laboratories in subjects with different sleep disorders. Journal of Sleep Research, 13, 63-69. https://doi.org/10.1046/j.1365-2869.2003.00375.x
  4. Debener, S., Emkes, R., De Voss, M., & Bleichner, M. (2015). Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Scientific Reports, 5, 16,743. https://doi.org/10.1038/srep16743
  5. Derry, C. P., & Duncan, S. (2013). Sleep and epilepsy. Epilepsy and Behavior, 26, 394-404. https://doi.org/10.1016/j.yebeh.2012.10.033
  6. Goverdovsky, V., Looney, D., Kidmose, P., & Mandic, D. P. (2016). In-ear EEG from viscoelastic generic earpieces: Robust and unobtrusive 24/7 monitoring. IEEG Sensors Journal, 16, 271-277. https://doi.org/10.1109/JSEN.2015.2471183
  7. Hoppe, C., Poepel, A., & Elger, C. E. (2007). Accuracy of patients seizure counts. JAMA Neurology, 64, 1595-1599. https://doi.org/10.1001/archneur.64.11.1595
  8. Kappel, S. L., Rank, M. L., Toft, H. O., Andersen, M., & Kidmose, P. (2019). Dry-contact electrode ear-EEG. IEEE Transactions on Biomedical Engineering, 66, 150-158. https://doi.org/10.1109/TBME.2018.2835778
  9. Levendowski, D. J., Ferini-Strambi, L., Gamaldo, C., Cetel, M., Rosenberg, R., & Westbrook, P. R. (2017). The accuracy, night-to-night variability, and stability of frontopolar sleep electroencephalography biomarkers. Journal of Clinical Sleep Medicine, 13, 791-803. https://doi.org/10.5664/jcsm.6618
  10. Looney, D., Goverdovsky, V., Rosenzweig, I., Morrell, M. J., & Mandic, D. P. (2016). Wearable in-ear encephalography sensor for monitoring sleep. Preliminary observations from nap studies. Annals of the American Thoracic Society, 13, 2229-2233. https://doi.org/10.1513/AnnalsATS.201605-342BC
  11. Looney, P. D., Park, C., Kidmose, P., Rank, M. L., Ungstrup, M., Rosenkranz, K., & Mandic, D. P. (2011). An in-the-ear platform for recording electroencephalogram. International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 01, 6882-6885. https://doi.org/10.1109/IEMBS.2011.6091733
  12. Lucey, B. P., McLeland, J. S., Toedebusch, C. D., Boyd, J., Morris, J. C., Landsness, E. C., … Holtzman, D. M. (2016). Comparison of a single-channel EEG sleep study to polysomnography. Journal of Sleep Research, 25, 625-635. https://doi.org/10.1111/jsr.12417
  13. Mikkelsen, K. B., Ebajemito, J. K., Bonmati-Carrion, M. A., Santhi, N., Revell, V. L., Atzori, G., … De Vos, M. J. (2019). Machine-learning-derived sleep-wake staging from around-the-ear electroencephalogram outperforms manual scoring and actigraphy. Journal of Sleep Research, 28, e12786. https://doi.org/10.1111/jsr.12786
  14. Mikkelsen, K. B., Villadsen, D. B., Otto, M., & Kidmose, P. (2017). Automatic sleep staging using Ear-EEG. Biomedical Engineering Online, 16, 111. https://doi.org/10.1186/s12938-017-0400-5
  15. Shambroom, J. R., Fábregas, S. E., & Johnstone, J. (2012). Validation of an automated wireless system to monitor sleep in healthy adults. Journal of Sleep Research, 21, 221-230. https://doi.org/10.1111/j.1365-2869.2011.00944.x
  16. Stochholm, A., Mikkelsen, K. B., & Kidmose, P. (2016). Automatic sleep stage classification using ear-EEG. 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 4751-4754). Orlando, FL, USA. https://doi.org/10.1109/embc.2016.7591789
  17. Vojkan, M., Grundlehner, B., Vullers, R., & Penders, J. (2015). Wearable, wireless EEG solutions in daily life applications: What are we missing? IEEE Journal of Biomedical and Health Informatics, 19, 6-21. https://doi.org/10.1109/JBHI.2014.2328317
  18. Yash, P. (2018). Various epileptic seizure detection techniques using biomedical signal: A review. Brain Informatics, 5, 6. https://doi.org/10.1186/s40708-018-0084-z
  19. Younes, M., Soiferman, M., Thompson, W., & Giannouli, E. (2017). Performance of a new portable wireless sleep monitor. Journal of Clinical Sleep Medicine, 13, 245-258. https://doi.org/10.5664/jcsm.6456
  20. Zibrandtsen, I., Kidmose, P., Christensen, C. B., & Kjaer, T. W. (2017). Ear-EEG detects ictal and interictal abnormalities in focal and generalized epilepsy - A comparison with scalp EEG monitoring. Clinical Neurophysiology, 12, 2454-2461. https://doi.org/10.1016/j.clinph.2017.09.115
  21. Zibrandtsen, I., Kidmose, P., & Kjaer, T. W. (2018). Detection of generalized tonic-clonic seizures from ear-EEG based on EMG analyses. Seizure, 59, 54-59. https://doi.org/10.1016/j.seizure.2018.05.001
  22. Zibrandtsen, I., Kidmose, P., Otto, M., Ibsen, J., & Kjaer, T. W. (2016). Case comparison of sleep features from ear-EEG and scalp-EEG. Sleep Science, 9, 69-72. https://doi.org/10.1016/j.slsci.2016.05.006

MeSH Term

Adolescent
Adult
Ear
Electroencephalography
Epilepsy
Female
Humans
Male
Middle Aged
Scalp
Wearable Electronic Devices
Young Adult

Word Cloud

Created with Highcharts 10.0.0sleepear-EEGepilepsyscalp-EEGrecordingswearabledevicepatientsusestagingindividualselectroencephalogramkappaEar-EEGelectroencephalogram-recordingreliesrecordingelectrodesnestedwithincustom-fittedearpieceexternalearcanalconceptpreviouslytestedseizuredetectionepileptichealthypopulationstudyfirstexaminecomparingstandardmultipledisturbancescomplexrelationshipseizuresmakegrouplikelybenefitdevicesintroducedclinicaccuracycomparedevaluatefeaturesarchitecturemeanvalue074foundagreementhypnogramsderivedFurthermorediscoveredstagetransitionfrequencycontributingvariationfindingsrelatedear-recordingsystemsliteraturepotentialsfutureobstaclesdiscussedEar-EEG-basedscoringepilepsy:comparisonmobilepolysomnography

Similar Articles

Cited By (4)