Myco-decontamination of azo dyes: nano-augmentation technologies.

Anu Kalia, Swarnjeet Singh
Author Information
  1. Anu Kalia: Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004 India. ORCID
  2. Swarnjeet Singh: Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab 141004 India.

Abstract

Effluents of textile, paper, and related industries contain significant amounts of synthetic dyes which has serious environmental and health implications. Remediation of dyes through physical and chemical techniques has specific limitations. Augmented biological decontamination strategies 'microbial remediation' may involve ring-opening of dye molecules besides the reduction of constituent metal ions. Both bacterial and fungal genera are known to exhibit metabolic versatility which can be harnessed for effective bio-removal of the toxic dye contaminants. Ascomycetous/basidiomycetes fungi can effectively decontaminate azo dyes through laccase/peroxidase enzyme-mediated catalysis. The extent, efficacy, and range of fungal dye decontamination can be enhanced by the conjugated application of nanomaterials, including nanoparticles (NPs) and their composites. fungal cell-enabled NP synthesis- 'myco-farmed NPs', is a low-cost strategy for scaled-up fabrication of a variety of metal, metal oxide, non-metal oxide NPs through oxidation/reduction of dissolved ions/molecules by extracellular biomolecules. Augmented and rapid decontamination of azo dyes at high concentrations can be achieved by the use of myco-farmed NPs, NPs adsorbed fungal biomass, and nano-immobilized fungi-derived bio-catalytical agents. This manuscript will explore the opportunities and benefits of mycoremediation and application of fungus-NP bionanoconjugate to remediate dye pollutants in wastewaters and land contaminated with the effluent of textile industries.

Keywords

References

  1. Biotechnol Adv. 2009 May-Jun;27(3):227-35 [PMID: 19211032]
  2. Chem Commun (Camb). 2010 Oct 14;46(38):7172-4 [PMID: 20717577]
  3. Bioresour Technol. 2009 May;100(9):2493-500 [PMID: 19157864]
  4. PLoS One. 2014 Oct 06;9(10):e109786 [PMID: 25285777]
  5. Iranian J Environ Health Sci Eng. 2012 Dec 15;9(1):27 [PMID: 23369690]
  6. Bioinorg Chem Appl. 2016;2016:8629178 [PMID: 27382364]
  7. Molecules. 2017 Dec 16;22(12): [PMID: 29258168]
  8. Artif Cells Nanomed Biotechnol. 2018;46(sup2):408-418 [PMID: 29616833]
  9. Appl Environ Microbiol. 1993 Aug;59(8):2607-13 [PMID: 8368848]
  10. J AOAC Int. 2015 Mar-Apr;98(2):445-9 [PMID: 25905752]
  11. Biotechnol Rep (Amst). 2014 Nov 11;5:31-39 [PMID: 28626680]
  12. ACS Appl Mater Interfaces. 2013 Dec 11;5(23):12554-60 [PMID: 24245853]
  13. Materials (Basel). 2016 Aug 04;9(8): [PMID: 28773775]
  14. Chem Soc Rev. 2015 Oct 7;44(17):6330-74 [PMID: 26083903]
  15. Appl Environ Microbiol. 1988 May;54(5):1143-50 [PMID: 3389809]
  16. Protein Expr Purif. 2004 Apr;34(2):302-10 [PMID: 15003265]
  17. Chem Soc Rev. 2015 Dec 7;44(23):8410-23 [PMID: 26435358]
  18. Water Sci Technol. 2015;71(9):1361-6 [PMID: 25945853]
  19. Environ Technol. 2014 Mar-Apr;35(5-8):956-65 [PMID: 24645479]
  20. Bioresour Technol. 2010 Jun;101(12):4737-41 [PMID: 20156682]
  21. Appl Microbiol Biotechnol. 2001 Jul;56(1-2):81-7 [PMID: 11499950]
  22. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Aug 5;147:173-7 [PMID: 25840025]
  23. Chemosphere. 2015 Dec;140:26-33 [PMID: 25439129]
  24. Chemosphere. 2003 Aug;52(6):967-73 [PMID: 12781230]
  25. Bioresour Technol. 2008 May;99(7):2293-8 [PMID: 17600703]
  26. J Environ Health Sci Eng. 2015 Apr 25;13:38 [PMID: 25932329]
  27. J Biotechnol. 2001 Aug 23;89(2-3):131-9 [PMID: 11500206]
  28. Reprod Toxicol. 2005 Mar-Apr;19(4):547-56 [PMID: 15749270]
  29. J Photochem Photobiol B. 2018 Apr;181:44-52 [PMID: 29499463]
  30. Appl Microbiol Biotechnol. 2007 Feb;74(1):239-43 [PMID: 17086413]
  31. Nanomaterials (Basel). 2017 Mar 05;7(3): [PMID: 28336891]
  32. Bioresour Technol. 2018 Apr;253:355-367 [PMID: 29352640]
  33. J Photochem Photobiol B. 2018 Jun;183:154-163 [PMID: 29705508]
  34. Angew Chem Int Ed Engl. 2008;47(29):5306-20 [PMID: 18512208]
  35. Microbiology (Reading). 2005 May;151(Pt 5):1433-1441 [PMID: 15870453]
  36. Environ Int. 2009 Jan;35(1):127-41 [PMID: 18617266]
  37. Indian J Microbiol. 2016 Sep;56(3):247-64 [PMID: 27407289]
  38. Microbiology (Reading). 2010 Sep;156(Pt 9):2630-2640 [PMID: 20542928]
  39. Microbiology (Reading). 2003 Sep;149(Pt 9):2455-2462 [PMID: 12949171]
  40. Biotechnol Adv. 2003 Dec;22(1-2):161-87 [PMID: 14623049]
  41. Bioresour Technol. 2013 Nov;148:39-46 [PMID: 24035817]
  42. Crit Rev Biotechnol. 2006 Oct-Dec;26(4):201-21 [PMID: 17095432]
  43. Bioresour Technol. 2009 Jan;100(1):501-4 [PMID: 18625550]
  44. Biotechnol Bioeng. 2004 Aug 20;87(4):552-63 [PMID: 15286993]
  45. Braz J Microbiol. 2018 Apr - Jun;49(2):285-295 [PMID: 29129408]
  46. Water Res. 2004 Sep;38(16):3596-604 [PMID: 15325186]
  47. Bioresour Technol. 2007 Mar;98(4):775-80 [PMID: 16730976]
  48. Folia Microbiol (Praha). 2002;47(3):273-7 [PMID: 12094737]
  49. Appl Environ Microbiol. 2005 Nov;71(11):6711-8 [PMID: 16269701]
  50. J Hazard Mater. 2006 Oct 11;137(3):1689-97 [PMID: 16765512]
  51. J Nanosci Nanotechnol. 2013 Nov;13(11):7712-6 [PMID: 24245320]
  52. Nanomaterials (Basel). 2020 Apr 16;10(4): [PMID: 32316212]
  53. Nanoscale. 2013 Mar 21;5(6):2300-6 [PMID: 23223802]
  54. Bioresour Technol. 2004 Sep;94(2):107-12 [PMID: 15158501]
  55. Folia Microbiol (Praha). 2002;47(6):691-5 [PMID: 12630321]
  56. Chemphyschem. 2005 Jul 11;6(7):1221-31 [PMID: 15942971]
  57. J Hazard Mater. 2009 Aug 15;167(1-3):995-1001 [PMID: 19237244]
  58. PLoS One. 2015 Jul 23;10(7):e0132067 [PMID: 26204523]
  59. Bioresour Technol. 2001 Sep;79(3):251-62 [PMID: 11499579]
  60. J Microbiol Methods. 1999 Jul;37(1):97-100 [PMID: 10395469]
  61. Molecules. 2011 Dec 14;16(12):10370-86 [PMID: 22169940]
  62. Bioresour Technol. 2008 Jan;99(1):51-8 [PMID: 17251011]
  63. Appl Microbiol Biotechnol. 2003 Aug;62(2-3):186-90 [PMID: 12719939]
  64. Mycobiology. 2020 Aug 27;48(5):383-391 [PMID: 33177917]
  65. J Biotechnol. 2003 Feb 27;101(1):49-56 [PMID: 12523969]
  66. PeerJ. 2018 May 22;6:e4802 [PMID: 29844965]
  67. Yeast. 2001 Apr;18(6):543-54 [PMID: 11284010]
  68. Bioresour Technol. 2007 Dec;98(18):3638-42 [PMID: 17204422]
  69. R Soc Open Sci. 2018 Aug 15;5(8):180795 [PMID: 30225070]
  70. Enzyme Res. 2014;2014:163242 [PMID: 24959348]
  71. J Am Chem Soc. 2005 Mar 2;127(8):2752-7 [PMID: 15725033]
  72. J Am Chem Soc. 2002 Oct 16;124(41):12108-9 [PMID: 12371846]
  73. J Biol Chem. 1997 Jul 11;272(28):17574-80 [PMID: 9211904]
  74. Nat Biotechnol. 2003 Oct;21(10):1229-32 [PMID: 12960964]
  75. Braz J Microbiol. 2014 Oct 09;45(3):1055-63 [PMID: 25477943]
  76. Water Res. 2004 Feb;38(4):1062-8 [PMID: 14769427]
  77. Eur J Microbiol Immunol (Bp). 2019 Oct 03;9(4):114-118 [PMID: 31934362]
  78. Appl Environ Microbiol. 1981 Aug;42(2):290-6 [PMID: 16345829]
  79. Water Res. 2004 Apr;38(7):1838-52 [PMID: 15026239]
  80. Colloids Surf B Biointerfaces. 2006 Feb 1;47(2):160-4 [PMID: 16420977]
  81. Braz J Microbiol. 2010 Oct;41(4):907-15 [PMID: 24031570]
  82. Chem Commun (Camb). 2002 Jan 7;(1):76-7 [PMID: 12120318]
  83. ScientificWorldJournal. 2014;2014:692307 [PMID: 25054183]
  84. Inhal Toxicol. 2010 Dec;22 Suppl 2:107-16 [PMID: 20701428]
  85. Biomed Res Int. 2013;2013:180156 [PMID: 23841054]
  86. Trends Biotechnol. 2013 Apr;31(4):240-8 [PMID: 23434153]
  87. Appl Environ Microbiol. 2002 Aug;68(8):3948-55 [PMID: 12147495]
  88. Toxicol Int. 2014 May;21(2):160-6 [PMID: 25253925]
  89. Ecotoxicol Environ Saf. 2018 Feb;148:528-537 [PMID: 29125956]
  90. Cell Mol Biol (Noisy-le-grand). 2012 Dec 22;58(1):21-5 [PMID: 23273187]
  91. Environ Monit Assess. 2011 Dec;183(1-4):151-95 [PMID: 21387170]
  92. Microb Biotechnol. 2017 Nov;10(6):1457-1467 [PMID: 27696775]
  93. Langmuir. 2009 Jul 21;25(14):8192-9 [PMID: 19425601]
  94. Appl Environ Microbiol. 1998 Mar;64(3):830-5 [PMID: 16349526]
  95. Biotech Histochem. 2001 Sep-Nov;76(5-6):261-78 [PMID: 11871748]
  96. Nanoscale Res Lett. 2014 Sep 16;9(1):501 [PMID: 25258615]
  97. Environ Int. 2004 Sep;30(7):953-71 [PMID: 15196844]
  98. J Photochem Photobiol B. 2018 May;182:62-70 [PMID: 29621690]
  99. Nanomaterials (Basel). 2020 Jan 24;10(2): [PMID: 31991548]
  100. Chem Commun (Camb). 2011 May 28;47(20):5795-7 [PMID: 21494723]
  101. Langmuir. 2015 Oct 27;31(42):11605-12 [PMID: 26447769]
  102. Environ Pollut. 2002;118(1):65-73 [PMID: 11996384]

Word Cloud

Created with Highcharts 10.0.0dyesdyecanNPsAugmenteddecontaminationmetalfungalazotextileindustriesgeneraapplicationFungaloxideEffluentspaperrelatedcontainsignificantamountssyntheticseriousenvironmentalhealthimplicationsRemediationphysicalchemicaltechniquesspecificlimitationsbiologicalstrategies'microbialremediation'mayinvolvering-openingmoleculesbesidesreductionconstituentionsbacterialknownexhibitmetabolicversatilityharnessedeffectivebio-removaltoxiccontaminantsAscomycetous/basidiomycetesfungieffectivelydecontaminatelaccase/peroxidaseenzyme-mediatedcatalysisextentefficacyrangeenhancedconjugatednanomaterialsincludingnanoparticlescompositescell-enabledNPsynthesis-'myco-farmedNPs'low-coststrategyscaled-upfabricationvarietynon-metaloxidation/reductiondissolvedions/moleculesextracellularbiomoleculesrapidhighconcentrationsachievedusemyco-farmedadsorbedbiomassnano-immobilizedfungi-derivedbio-catalyticalagentsmanuscriptwillexploreopportunitiesbenefitsmycoremediationfungus-NPbionanoconjugateremediatepollutantswastewaterslandcontaminatedeffluentMyco-decontaminationdyes:nano-augmentationtechnologiesremediationLaccaseNanoparticlesOrganic

Similar Articles

Cited By (3)