Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection.

Jin Wei, Mia Madel Alfajaro, Peter C DeWeirdt, Ruth E Hanna, William J Lu-Culligan, Wesley L Cai, Madison S Strine, Shang-Min Zhang, Vincent R Graziano, Cameron O Schmitz, Jennifer S Chen, Madeleine C Mankowski, Renata B Filler, Neal G Ravindra, Victor Gasque, Fernando J de Miguel, Ajinkya Patil, Huacui Chen, Kasopefoluwa Y Oguntuyo, Laura Abriola, Yulia V Surovtseva, Robert C Orchard, Benhur Lee, Brett D Lindenbach, Katerina Politi, David van Dijk, Cigall Kadoch, Matthew D Simon, Qin Yan, John G Doench, Craig B Wilen
Author Information
  1. Jin Wei: Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA.
  2. Mia Madel Alfajaro: Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA.
  3. Peter C DeWeirdt: Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  4. Ruth E Hanna: Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  5. William J Lu-Culligan: Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA; Department of Cell Biology, Yale University, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA.
  6. Wesley L Cai: Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA.
  7. Madison S Strine: Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA.
  8. Shang-Min Zhang: Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA.
  9. Vincent R Graziano: Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA.
  10. Cameron O Schmitz: Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA.
  11. Jennifer S Chen: Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA.
  12. Madeleine C Mankowski: Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA.
  13. Renata B Filler: Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA.
  14. Neal G Ravindra: Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Computer Science, Yale University, New Haven, CT 06520, USA.
  15. Victor Gasque: Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Computer Science, Yale University, New Haven, CT 06520, USA.
  16. Fernando J de Miguel: Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA.
  17. Ajinkya Patil: Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  18. Huacui Chen: Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA.
  19. Kasopefoluwa Y Oguntuyo: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
  20. Laura Abriola: Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516, USA.
  21. Yulia V Surovtseva: Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516, USA.
  22. Robert C Orchard: Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
  23. Benhur Lee: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
  24. Brett D Lindenbach: Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06520, USA.
  25. Katerina Politi: Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA; Department of Medicine, Yale School of Medicine, New Haven, CT 06520, USA.
  26. David van Dijk: Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Computer Science, Yale University, New Haven, CT 06520, USA.
  27. Cigall Kadoch: Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  28. Matthew D Simon: Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA; Chemical Biology Institute, Yale University, West Haven, CT 06516, USA.
  29. Qin Yan: Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA.
  30. John G Doench: Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address: jdoench@broadinstitute.org.
  31. Craig B Wilen: Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA. Electronic address: craig.wilen@yale.edu.

Abstract

Identification of host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may reveal novel therapeutic targets and inform our understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here we performed genome-wide CRISPR screens in Vero-E6 cells with SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), bat CoV HKU5 expressing the SARS-CoV-1 spike, and vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike. We identified known SARS-CoV-2 host factors, including the receptor ACE2 and protease Cathepsin L. We additionally discovered pro-viral genes and pathways, including HMGB1 and the SWI/SNF chromatin remodeling complex, that are SARS lineage and pan-coronavirus specific, respectively. We show that HMGB1 regulates ACE2 expression and is critical for entry of SARS-CoV-2, SARS-CoV-1, and NL63. We also show that small-molecule antagonists of identified gene products inhibited SARS-CoV-2 infection in monkey and human cells, demonstrating the conserved role of these genetic hits across species. This identifies potential therapeutic targets for SARS-CoV-2 and reveals SARS lineage-specific and pan-CoV host factors that regulate susceptibility to highly pathogenic CoVs.

Keywords

References

  1. Mol Pharmacol. 2006 Feb;69(2):597-607 [PMID: 16288083]
  2. Pathogens. 2017 Feb 15;6(1): [PMID: 28212305]
  3. Virology. 2007 May 10;361(2):304-15 [PMID: 17210170]
  4. Semin Immunol. 2018 Aug;38:40-48 [PMID: 29530410]
  5. Nature. 2020 Jul;583(7816):459-468 [PMID: 32353859]
  6. Mol Syst Biol. 2014 Jul 01;10:733 [PMID: 24987113]
  7. Pathogens. 2019 Oct 15;8(4): [PMID: 31618932]
  8. Nat Microbiol. 2020 Nov;5(11):1330-1339 [PMID: 32704094]
  9. Sci Adv. 2015 Nov 13;1(10):e1500723 [PMID: 26702435]
  10. Science. 2009 Jul 3;325(5936):90-3 [PMID: 19574390]
  11. Cell Host Microbe. 2020 Sep 9;28(3):486-496.e6 [PMID: 32738193]
  12. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  13. Cell. 2018 Nov 15;175(5):1272-1288.e20 [PMID: 30343899]
  14. Mol Cell Biol. 2013 Dec;33(23):4745-54 [PMID: 24081332]
  15. J Virol. 2012 Apr;86(8):4234-44 [PMID: 22345460]
  16. Nucleic Acids Res. 2016 Jul 8;44(W1):W160-5 [PMID: 27079975]
  17. Nat Immunol. 2021 Jan;22(1):86-98 [PMID: 33235385]
  18. Mol Cell. 2020 May 21;78(4):779-784.e5 [PMID: 32362314]
  19. Science. 2003 Oct 10;302(5643):276-8 [PMID: 12958366]
  20. N Engl J Med. 2020 Feb 20;382(8):727-733 [PMID: 31978945]
  21. N Engl J Med. 2014 Oct 2;371(14):1359-60 [PMID: 25271615]
  22. Dev Cell. 2020 Jun 8;53(5):514-529.e3 [PMID: 32425701]
  23. JAMA. 2020 Mar 17;323(11):1061-1069 [PMID: 32031570]
  24. mBio. 2014 May 20;5(3):e01174-14 [PMID: 24846384]
  25. Science. 2016 Aug 26;353(6302):933-6 [PMID: 27540007]
  26. Nat Biotechnol. 2016 Feb;34(2):184-191 [PMID: 26780180]
  27. Mol Med. 2020 May 7;26(1):42 [PMID: 32380958]
  28. Cancer Cell. 2011 Jul 12;20(1):92-103 [PMID: 21741599]
  29. J Gen Virol. 1979 Apr;43(1):247-52 [PMID: 113494]
  30. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  31. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  32. Cell. 2020 Apr 16;181(2):281-292.e6 [PMID: 32155444]
  33. Annu Rev Virol. 2016 Sep 29;3(1):237-261 [PMID: 27578435]
  34. Pediatr Res. 2018 May;83(5):1049-1056 [PMID: 29329282]
  35. Sci Immunol. 2020 May 13;5(47): [PMID: 32404436]
  36. Nature. 2003 Nov 27;426(6965):450-4 [PMID: 14647384]
  37. Science. 2020 Jul 3;369(6499):77-81 [PMID: 32376603]
  38. PLoS Biol. 2008 Sep 16;6(9):e226 [PMID: 18798692]
  39. Sci Rep. 2015 Nov 26;5:17155 [PMID: 26607834]
  40. Nat Rev Mol Cell Biol. 2017 Jul;18(7):407-422 [PMID: 28512350]
  41. Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7001-7003 [PMID: 32165541]
  42. Trends Genet. 2020 Dec;36(12):936-950 [PMID: 32873422]
  43. Proc Natl Acad Sci U S A. 2005 May 31;102(22):7988-93 [PMID: 15897467]
  44. Nature. 2013 Mar 14;495(7440):251-4 [PMID: 23486063]
  45. J Gen Virol. 2020 Sep;101(9):925-940 [PMID: 32568027]
  46. Mol Immunol. 2009 Jan;46(3):393-9 [PMID: 19038458]
  47. Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81 [PMID: 16081529]
  48. J Biol Chem. 2013 Mar 1;288(9):6053-62 [PMID: 23303181]
  49. Nat Commun. 2018 Dec 21;9(1):5416 [PMID: 30575746]
  50. Nat Biotechnol. 2014 Dec;32(12):1262-7 [PMID: 25184501]
  51. Curr Protoc Mol Biol. 2015 Jan 05;109:21.29.1-21.29.9 [PMID: 25559105]
  52. Virology. 1982 Aug;121(1):157-67 [PMID: 18638751]
  53. mBio. 2014 Mar 25;5(2):e00047-14 [PMID: 24667706]
  54. Am J Respir Crit Care Med. 2020 Jun 1;201(11):1358-1371 [PMID: 32105156]
  55. Nat Microbiol. 2020 Apr;5(4):562-569 [PMID: 32094589]
  56. Lancet Infect Dis. 2020 May;20(5):533-534 [PMID: 32087114]
  57. Cell Host Microbe. 2020 May 13;27(5):841-848.e3 [PMID: 32289263]
  58. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11727-11734 [PMID: 32376634]
  59. Cell Host Microbe. 2020 Sep 9;28(3):465-474.e4 [PMID: 32798445]
  60. Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16157-62 [PMID: 24043791]
  61. Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1118-23 [PMID: 18216267]
  62. Genome Biol. 2008;9(9):R137 [PMID: 18798982]
  63. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  64. Nat Methods. 2014 Aug;11(8):783-784 [PMID: 25075903]
  65. Annu Rev Biophys. 2016 Jul 5;45:153-81 [PMID: 27391925]
  66. Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613 [PMID: 30476243]
  67. J Virol. 2011 Feb;85(4):1554-62 [PMID: 21123387]
  68. J Biol Chem. 2006 Feb 10;281(6):3198-203 [PMID: 16339146]
  69. J Med Virol. 2019 Mar;91(3):361-369 [PMID: 30281823]
  70. Cell. 2015 Dec 3;163(6):1515-26 [PMID: 26627737]
  71. Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):E1012-E1021 [PMID: 29339515]
  72. Proc Natl Acad Sci U S A. 2019 Dec 10;116(50):25057-25067 [PMID: 31767754]
  73. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  74. Nat Rev Microbiol. 2019 Mar;17(3):181-192 [PMID: 30531947]
  75. Science. 2020 Mar 27;367(6485):1444-1448 [PMID: 32132184]
  76. J Virol. 2006 Jun;80(12):5927-40 [PMID: 16731931]
  77. Nat Commun. 2020 Mar 27;11(1):1620 [PMID: 32221306]
  78. J Virol. 1968 Oct;2(10):955-61 [PMID: 4302013]
  79. Nat Commun. 2018 Aug 6;9(1):3103 [PMID: 30082790]
  80. Mol Cell Biol. 2011 Oct;31(19):4107-18 [PMID: 21807893]
  81. Emerg Infect Dis. 2020 Dec;26(12):2835-2843 [PMID: 32744989]
  82. Nat Methods. 2017 Oct;14(10):959-962 [PMID: 28846090]
  83. Science. 2019 Mar 15;363(6432):1217-1222 [PMID: 30872525]
  84. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  85. Cell Rep. 2013 Apr 25;3(4):1012-9 [PMID: 23602572]
  86. Nature. 2016 Jul 7;535(7610):173-7 [PMID: 27362237]
  87. RNA. 2003 Apr;9(4):493-501 [PMID: 12649500]
  88. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]

Grants

  1. R01 AI123449/NIAID NIH HHS
  2. T32 AI007019/NIAID NIH HHS
  3. T32 GM007223/NIGMS NIH HHS
  4. UL1 TR001863/NCATS NIH HHS
  5. F30 HL149151/NHLBI NIH HHS
  6. R01 AI148467/NIAID NIH HHS
  7. R21 AI157835/NIAID NIH HHS
  8. T32 GM007205/NIGMS NIH HHS
  9. F31 AI54739/NIAID NIH HHS
  10. P50 CA121974/NCI NIH HHS
  11. K08 AI128043/NIAID NIH HHS
  12. R01 AI087925/NIAID NIH HHS
  13. F31 DA054739/NIDA NIH HHS
  14. U19 AI133524/NIAID NIH HHS
  15. T32 CA193200/NCI NIH HHS
  16. R00 DK116666/NIDDK NIH HHS
  17. F31 AI154739/NIAID NIH HHS
  18. P50 CA196530/NCI NIH HHS

MeSH Term

Angiotensin-Converting Enzyme 2
Animals
COVID-19
Cell Line
Chlorocebus aethiops
Clustered Regularly Interspaced Short Palindromic Repeats
Coronavirus
Coronavirus Infections
Gene Knockout Techniques
Gene Regulatory Networks
Genome-Wide Association Study
HEK293 Cells
HMGB1 Protein
Host-Pathogen Interactions
Humans
SARS-CoV-2
Vero Cells
Virus Internalization

Chemicals

HMGB1 Protein
Angiotensin-Converting Enzyme 2