Zhang-Xu He: State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
Jin-Ling Huo: State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
Yun-Peng Gong: State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
Qi An: State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
Xin Zhang: State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
Hui Qiao: State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
Fei-Fei Yang: State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
Xin-Hui Zhang: State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
Le-Min Jiao: State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
Hong-Min Liu: State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China. Electronic address: liuhm@zzu.edu.cn.
Li-Ying Ma: State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China. Electronic address: maliying@zzu.edu.cn.
Wen Zhao: State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China. Electronic address: zhaowen100@139.com.
To discover novel anticancer agents with potent and low toxicity, we designed and synthesized a range of new thiosemicarbazone-indole analogues based on lead compound 4 we reported previously. Most compounds displayed moderate to high anticancer activities against five tested tumor cells (PC3, EC109, DU-145, MGC803, MCF-7). Specifically, the represented compound 16f possessed strong antiproliferative potency and high selectivity toward PC3 cells with the IC value of 0.054 μM, compared with normal WPMY-1 cells with the IC value of 19.470 μM. Preliminary mechanism research indicated that compound 16f could significantly suppress prostate cancer cells (PC3, DU-145) growth and colony formation in a dose-dependent manner. Besides, derivative16f induced G1/S cycle arrest and apoptosis, which may be related to ROS accumulation due to the activation of MAPK signaling pathway. Furthermore, molecule 16f could effectively inhibit tumor growth through a xenograft model bearing PC3 cells and had no evident toxicity in vivo. Overall, based on the biological activity evaluation, analogue 16f can be viewed as a potential lead compound for further development of novel anti-prostate cancer drug.