Metabolic programs define dysfunctional immune responses in severe COVID-19 patients.

Elizabeth A Thompson, Katherine Cascino, Alvaro A Ordonez, Weiqiang Zhou, Ajay Vaghasia, Anne Hamacher-Brady, Nathan R Brady, Im-Hong Sun, Rulin Wang, Avi Z Rosenberg, Michael Delannoy, Richard Rothman, Katherine Fenstermacher, Lauren Sauer, Kathyrn Shaw-Saliba, Evan M Bloch, Andrew D Redd, Aaron A R Tobian, Maureen Horton, Kellie Smith, Andrew Pekosz, Franco R D'Alessio, Srinivasan Yegnasubramanian, Hongkai Ji, Andrea L Cox, Jonathan D Powell
Author Information
  1. Elizabeth A Thompson: Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg���Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
  2. Katherine Cascino: Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
  3. Alvaro A Ordonez: Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
  4. Weiqiang Zhou: Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
  5. Ajay Vaghasia: Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
  6. Anne Hamacher-Brady: W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
  7. Nathan R Brady: W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
  8. Im-Hong Sun: Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg���Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
  9. Rulin Wang: Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
  10. Avi Z Rosenberg: Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
  11. Michael Delannoy: Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
  12. Richard Rothman: Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
  13. Katherine Fenstermacher: Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
  14. Lauren Sauer: Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
  15. Kathyrn Shaw-Saliba: Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
  16. Evan M Bloch: Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
  17. Andrew D Redd: Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Baltimore, MD 21205, USA.
  18. Aaron A R Tobian: Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
  19. Maureen Horton: Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
  20. Kellie Smith: Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg���Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
  21. Andrew Pekosz: W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
  22. Franco R D'Alessio: Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
  23. Srinivasan Yegnasubramanian: Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg���Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
  24. Hongkai Ji: Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
  25. Andrea L Cox: Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg���Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA. Electronic address: acox@jhmi.edu.
  26. Jonathan D Powell: Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg���Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. Electronic address: jpowell@jhmi.edu.

Abstract

It is unclear why some SARS-CoV-2 patients readily resolve infection while others develop severe disease. By interrogating metabolic programs of immune cells in severe and recovered coronavirus disease 2019 (COVID-19) patients compared with other viral infections, we identify a unique population of T cells. These T cells express increased Voltage-Dependent Anion Channel 1 (VDAC1), accompanied by gene programs and functional characteristics linked to mitochondrial dysfunction and apoptosis. The percentage of these cells increases in elderly patients and correlates with lymphopenia. Importantly, T cell apoptosis is inhibited in vitro by targeting the oligomerization of VDAC1 or blocking caspase activity. We also observe an expansion of myeloid-derived suppressor cells with unique metabolic phenotypes specific to COVID-19, and their presence distinguishes severe from mild disease. Overall, the identification of these metabolic phenotypes provides insight into the dysfunctional immune response in acutely ill COVID-19 patients and provides a means to predict and track disease severity and/or design metabolic therapeutic regimens.

Keywords

References

  1. J Clin Invest. 2020 May 1;130(5):2620-2629 [PMID: 32217835]
  2. J Cell Biol. 2001 Jan 22;152(2):237-50 [PMID: 11266442]
  3. Dev Cell. 2020 Jun 22;53(6):627-645.e7 [PMID: 32504557]
  4. Cell. 2020 Jun 25;181(7):1489-1501.e15 [PMID: 32473127]
  5. Nature. 1999 Jun 3;399(6735):483-7 [PMID: 10365962]
  6. Immunity. 2020 Jun 16;52(6):910-941 [PMID: 32505227]
  7. Clin Infect Dis. 2020 Jan 1;70(1):49-58 [PMID: 30843056]
  8. Science. 2020 Sep 4;369(6508): [PMID: 32669297]
  9. Cell. 2017 May 4;169(4):570-586 [PMID: 28475890]
  10. Sci Immunol. 2020 Jul 15;5(49): [PMID: 32669287]
  11. Nature. 2020 Aug;584(7821):463-469 [PMID: 32717743]
  12. Mol Aspects Med. 2010 Jun;31(3):227-85 [PMID: 20346371]
  13. J Biol Chem. 2000 Apr 21;275(16):12321-5 [PMID: 10766872]
  14. Nat Immunol. 2020 Sep;21(9):1107-1118 [PMID: 32788748]
  15. Semin Immunol. 2018 Feb;35:19-28 [PMID: 29254756]
  16. Trends Immunol. 2016 Jun;37(6):375-385 [PMID: 27131432]
  17. Age (Dordr). 2009 Dec;31(4):285-91 [PMID: 19479342]
  18. Cell. 2020 Oct 1;183(1):158-168.e14 [PMID: 32979941]
  19. Immunity. 2016 Aug 16;45(2):358-73 [PMID: 27496729]
  20. Trends Immunol. 2019 Jul;40(7):565-583 [PMID: 31160207]
  21. Nat Commun. 2013;4:2680 [PMID: 24157944]
  22. Trends Immunol. 2014 Aug;35(8):396-402 [PMID: 25043801]
  23. Cell Metab. 2013 Aug 6;18(2):265-78 [PMID: 23931757]
  24. Clin Infect Dis. 2005 Apr 1;40(7):951-8 [PMID: 15824985]
  25. Immunol Rev. 2006 Jun;211:197-202 [PMID: 16824128]
  26. J Clin Invest. 2013 Mar;123(3):951-7 [PMID: 23454757]
  27. Lancet Infect Dis. 2020 May;20(5):533-534 [PMID: 32087114]
  28. Nat Med. 2016 Sep;22(9):1002-12 [PMID: 27455510]
  29. Science. 2003 Jul 25;301(5632):513-7 [PMID: 12881569]
  30. Nat Med. 2020 Oct;26(10):1623-1635 [PMID: 32807934]
  31. J Biol Chem. 2016 Nov 25;291(48):24986-25003 [PMID: 27738100]
  32. Front Physiol. 2017 Jun 30;8:460 [PMID: 28713289]
  33. Biochim Biophys Acta. 2009 May;1787(5):421-30 [PMID: 19094960]
  34. Nat Med. 2020 Jul;26(7):1070-1076 [PMID: 32514174]
  35. Nat Rev Drug Discov. 2019 Sep;18(9):669-688 [PMID: 31363227]
  36. J Clin Invest. 2020 Sep 1;130(9):4694-4703 [PMID: 32463803]
  37. J Clin Invest. 2020 Nov 2;130(11):6141-6150 [PMID: 32764200]
  38. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  39. Cell. 2020 Sep 17;182(6):1419-1440.e23 [PMID: 32810438]
  40. Front Immunol. 2018 Jul 03;9:1521 [PMID: 30018617]
  41. Nat Commun. 2016 Jul 06;7:12150 [PMID: 27381735]
  42. Science. 2020 Sep 4;369(6508):1210-1220 [PMID: 32788292]
  43. J Exp Med. 2015 Aug 24;212(9):1345-60 [PMID: 26261266]
  44. Cell Death Differ. 2006 Sep;13(9):1423-33 [PMID: 16676004]
  45. J Cell Sci. 2009 Jun 1;122(Pt 11):1906-16 [PMID: 19461077]
  46. Clin Transl Immunology. 2019 Nov 18;8(11):e01091 [PMID: 31832191]
  47. Science. 2019 Dec 20;366(6472):1531-1536 [PMID: 31857488]

Grants

  1. R01 HG009518/NHGRI NIH HHS
  2. R21 AI149760/NIAID NIH HHS
  3. R01 AI153349/NIAID NIH HHS
  4. R01 AI145435/NIAID NIH HHS
  5. R01 AI128779/NIAID NIH HHS
  6. UL1 TR001079/NCATS NIH HHS
  7. R01 AI120938/NIAID NIH HHS
  8. P41 EB028239/NIBIB NIH HHS
  9. HHSN272201400007C/NIAID NIH HHS
  10. S10 OD023548/NIH HHS
  11. U19 AI088791/NIAID NIH HHS

MeSH Term

Adult
Aged
Aged, 80 and over
Apoptosis
COVID-19
Caspases
Female
Humans
Immunity
Lymphopenia
Male
Middle Aged
Mitochondria
Myeloid-Derived Suppressor Cells
SARS-CoV-2
T-Lymphocytes
Voltage-Dependent Anion Channel 1
Young Adult

Chemicals

Voltage-Dependent Anion Channel 1
Caspases