Virulence assessment of enterohepatic Helicobacter species carried by dogs using the wax moth larvae Galleria mellonella as infection model.

Sofía Ochoa, Fabiola Fernández, Luis Devotto, Andrés France Iglesias, Luis Collado
Author Information
  1. Sofía Ochoa: Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile.
  2. Fabiola Fernández: Institute of Clinical Microbiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.
  3. Luis Devotto: Institute of Agricultural Research, Ministry of Agriculture, Chillán, Chile.
  4. Andrés France Iglesias: Institute of Agricultural Research, Ministry of Agriculture, Chillán, Chile.
  5. Luis Collado: Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile. ORCID

Abstract

BACKGROUND: Enterohepatic species of the genus Helicobacter (EHH) are emerging pathogens that have been associated with gastrointestinal and hepatobiliary diseases in humans. However, studies on their pathogenicity are scarce. Galleria mellonella is a recently proposed model for the study of virulence in different pathogens, such as Campylobacter spp. and Helicobacter pylori. Despite this, its usefulness in EHH has not yet been evaluated. Therefore, we determined the pathogenic potential of different EHH species isolated from dogs in this infection model.
MATERIALS AND METHODS: Four species of EHH (H. bilis, H. canicola, H. canis, and 'H. winghamensis') isolated from fecal samples from domestic dogs were evaluated. Three strains of each species were inoculated in cohorts of G. mellonella at a concentration of 1 × 10  CFU/mL. Survival curves were determined by the Kaplan-Meier method. In addition, the quantification of melanin, bacterial load in hemolymph, and histopathology were evaluated daily post-infection (pi).
RESULTS: G. mellonella larvae are susceptible to EHH infection, exhibiting intra- and inter-species variability. melanin production became evident from 4 h pi and increased throughout the assay. All species were recovered from the hemolymph after 20 min pi; however, only H. canis could be recovered up to 48 h pi. Histopathology revealed cellular and humoral immune response, evidencing accumulation of hemocytes, nodulation, and melanin deposition in different tissues.
CONCLUSION: EHH species carried by dogs have considerable pathogenic potential, being H. canicola the species with the highest degree of virulence. Thus, G. mellonella is a useful model to assess virulence in these emerging pathogens.

Keywords

References

  1. Flahou B, Haesebrouck F, Smet A. Non-Helicobacter pylori Helicobacter infections in humans and animals. In: Backert S, Yamaoka Y, eds. Helicobacter pylori Research. Japan: Springer; 2016:233-269. https://doi.org/10.1007/978-4-431-55936-8_10.
  2. Gilbert MJ, Duim B, Zomer AL, Wagenaar JA. Living in cold lood: Arcobacter, Campylobacter, and Helicobacter in reptiles. Front Microbiol. 2019;10:1086. https://doi.org/10.3389/fmicb.2019.01086
  3. Fox JG. The non-H pylori helicobacters: their expanding role in gastrointestinal and systemic diseases. Gut. 2002;50(2):273-283. https://doi.org/10.1136/gut.50.2.273
  4. Mitchell HM, Rocha GA, Kaakoush NO, O’Rourke JL, Queiroz DMM. The family Helicobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, eds. The Prokaryotes. Berlin, Heidelberg: Springer; 2014:337-392.
  5. Sabry MA, Abdel-Moein KA, Seleem A. Evidence of zoonotic transmission of Helicobacter canis between sheep and human contacts. Vector Borne Zoonotic Dis. 2016;16:650-653. https://doi.org/10.1089/vbz.2016.1994
  6. Mladenova-Hristova I, Grekova O, Patel A. Zoonotic potential of Helicobacter spp. J Microbiol Immunol Infect. 2017;50(3):265-269. https://doi.org/10.1016/j.jmii.2016.11.003
  7. Whary MT, Fox JG. Natural and experimental Helicobacter infections. Comp Med. 2004;54(2):128-158.
  8. Pereira TC, de Barros PP, Fugisaki LRO, et al. Recent advances in the use of Galleria mellonella model to study immune responses against human pathogens. J Fungi (Basel). 2018;4:128. https://doi.org/10.3390/jof4040128
  9. Tsai CJ, Loh JM, Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence. 2016;7(3):214-229. https://doi.org/10.1080/21505594.2015.1135289
  10. Andrea A, Krogfelt KA, Jenssen H. Methods and challenges of using the greater wax moth (Galleria mellonella) as a model organism in antimicrobial compound discovery. Microorganisms. 2019;7(3):85. https://doi.org/10.3390/microorganisms7030085
  11. Cutuli MA, Petronio Petronio G, Vergalito F, et al. Galleria mellonella as a consolidated in vivo model hosts: new developments in antibacterial strategies and novel drug testing. Virulence. 2019;10(1):527-541. https://doi.org/10.1080/21505594.2019.1621649
  12. Kavanagh K, Sheehan G. The use of Galleria mellonella larvae to identify novel antimicrobial agents against fungal species of medical interest. J Fungi (Basel). 2018;4(3):113. https://doi.org/10.3390/jof4030113
  13. Cotter G, Doyle S, Kavanagh K. Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol. 2000;27(2):163-169. https://doi.org/10.1111/j.1574-695X.2000.tb01427.x
  14. Ramarao N, Nielsen-Leroux C, Lereclus D. The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. J Vis Exp. 2012;70:e4392. https://doi.org/10.3791/4392
  15. Champion OL, Karlyshev AV, Senior NJ, et al. Insect infection model for Campylobacter jejuni reveals that O-methyl phosphoramidate has insecticidal activity. J Infect Dis. 2010;201(5):776-782. https://doi.org/10.1086/650494
  16. Senior NJ, Bagnall MC, Champion OL, et al. Galleria mellonella as an infection model for Campylobacter jejuni virulence. J Med Microbiol. 2011;60:661-669. https://doi.org/10.1099/jmm.0.026658-0
  17. Giannouli M, Palatucci AT, Rubino V, et al. Use of larvae of the wax moth Galleria mellonella as an in vivo model to study the virulence of Helicobacter pylori. BMC Microbiol. 2014;14:228. https://doi.org/10.1186/s12866-014-0228-0
  18. Bojanić K, Acke E, Roe WD, et al. Comparison of the pathogenic potential of Campylobacter jejuni, C. upsaliensis and C. helveticus and limitations of using larvae of Galleria mellonella as an infection model. Pathogens. 2020;9(9):E713. https://doi.org/10.3390/pathogens9090713
  19. Ochoa S, Ojeda J, Martínez OA, Vidal-Veuthey B, Collado L. Exploring the role of helathy dogs as hosts of enterohepatic Helicobacter species using cultivation-dependent and -independent approaches. Zoonoses Public Health. 2021;00:1-9. https://doi.org/10.1111/zph.12817
  20. Ochoa S, Martínez OA, Fernández H, Collado L. Comparison of media and growth conditions for culturing enterohepatic Helicobacter species. Lett Appl Microbiol. 2019;69:190-197. https://doi.org/10.1111/lam.13192
  21. Collado L, Muñoz N, Porte L, Ochoa S, Varela C, Muñoz I. Genetic diversity and clonal characteristics of ciprofloxacin-resistant Campylobacter jejuni isolated from Chilean patients with gastroenteritis. Infect Genet Evol. 2018;58:290-293. https://doi.org/10.1016/j.meegid.2017.12.026
  22. Askoura M, Stintzi A. Using Galleria mellonella as an infection model for Campylobacter jejuni pathogenesis. Methods Mol Biol. 2017;1512:163-169. https://doi.org/10.1007/978-1-4939-6536-6_14
  23. Kloezen W, van Helvert-van PM, Fahal AH, van de Sande WW. A Madurella mycetomatis grain model in Galleria mellonella larvae. PLoS Negl Trop Dis. 2015;9(7):e0003926. https://doi.org/10.1371/journal.pntd.0003926
  24. Barnoy S, Gancz H, Zhu Y, Honnold CL, Zurawski DV, Venkatesan MM. The Galleria mellonella larvae as an in vivo model for evaluation of Shigella virulence. Gut Microbes. 2017;8(4):335-350. https://doi.org/10.1080/19490976.2017.1293225
  25. Erickson DL, Russell CW, Johnson KL, Hileman T, Stewart RM. PhoP and OxyR transcriptional regulators contribute to Yersinia pestis virulence and survival within Galleria mellonella. Microb Pathog. 2011;51:389-395. https://doi.org/10.1016/j.micpath.2011.08.008
  26. Hurst MR, Beattie AK, Jones SA, Hsu PC, Calder J, van Koten C. Temperature-dependent Galleria mellonella mortality as a result of Yersinia entomophaga infection. Appl Environ Microbiol. 2015;81:6404-6414. https://doi.org/10.1128/AEM.00790-15
  27. Alenizi D, Ringwood T, Redhwan A, et al. All Yersinia enterocolitica are pathogenic: virulence of phylogroup 1 Y. enterocolitica in a Galleria mellonella infection model. Microbiology. 2016;162(1379-1387): https://doi.org/10.1099/mic.0.000311
  28. Hernández RJ, Hesse E, Dowling AJ, et al. Using the wax moth larva Galleria mellonella infection model to detect emerging bacterial pathogens. PeerJ. 2019;6:e6150. https://doi.org/10.7717/peerj.6150
  29. Ferraresso J, Lawton B, Bayliss S, et al. Determining the prevalence, identity and possible origin of bacterial pathogens in soil. Environ Microbiol. 2020;22(12):5327-5340.
  30. Kawamura Y, Tomida J, Morita Y, Fujii S, Okamoto T, Akaike T. Clinical and bacteriological characteristics of Helicobacter cinaedi infection. J Infect Chemother. 2014;20(9):517-526. https://doi.org/10.1016/j.jiac.2014.06.007
  31. Ménard A, Smet A. Review: other Helicobacter species. Helicobacter. 2019;24(suppl 1):e12645. https://doi.org/10.1111/hel.12645
  32. Shen Z, Feng Y, Rogers A, et al. Cytolethal distending toxin promotes Helicobacter cinaedi-associated typhlocolitis in interleukin-10-deficient mice. Infect Immun. 2009;77:2508-2516. https://doi.org/10.1128/IAI.00166-09
  33. Taniguchi T, Yamazaki W, Saeki Y, et al. The pathogenic potential of Helicobacter cinaedi isolated from non-human sources: adherence, invasion and translocation ability in polarized intestinal epithelial Caco-2 cells in vitro. J Vet Med Sci. 2016;78:627-632. https://doi.org/10.1292/jvms.15-0595
  34. Mannion A, Shen Z, Fox JG. Comparative genomics analysis to differentiate metabolic and virulence gene potential in gastric versus enterohepatic Helicobacter species. BMC Genom. 2018;19(1):830. https://doi.org/10.1186/s12864-018-5171-2
  35. Kavanagh K, Reeves EP. Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS Microbiol Rev. 2004;28(1):101-112. https://doi.org/10.1016/j.femsre.2003.09.002
  36. Whitten MMA, Coates CJ. Re-evaluation of insect melanogenesis research: views from the dark side. Pigment Cell Melanoma R. 2017;30(4):386-401. https://doi.org/10.1111/pcmr.12590
  37. Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence. 2013;4(7):597-603. https://doi.org/10.4161/viru.25906

MeSH Term

Animals
Disease Models, Animal
Dogs
Helicobacter
Helicobacter Infections
Larva
Moths
Virulence

Word Cloud

Created with Highcharts 10.0.0speciesEHHmellonelladogsHHelicobactermodelvirulencepipathogensGalleriadifferentevaluatedinfectionGemergingdeterminedpathogenicpotentialisolatedcanicolacanismelaninhemolymphlarvaerecoveredcarriedenterohepaticBACKGROUND:EnterohepaticgenusassociatedgastrointestinalhepatobiliarydiseaseshumansHoweverstudiespathogenicityscarcerecentlyproposedstudyCampylobacterspppyloriDespiteusefulnessyetThereforeMATERIALSANDMETHODS:Fourbilis'Hwinghamensis'fecalsamplesdomesticThreestrainsinoculatedcohortsconcentration1 × 10 CFU/mLSurvivalcurvesKaplan-Meiermethodadditionquantificationbacterialloadhistopathologydailypost-infectionRESULTS:susceptibleexhibitingintra-inter-speciesvariabilityMelaninproductionbecameevident4 hincreasedthroughoutassay20 minhowever48 hHistopathologyrevealedcellularhumoralimmuneresponseevidencingaccumulationhemocytesnodulationdepositiontissuesCONCLUSION:considerablehighestdegreeThususefulassessVirulenceassessmentusingwaxmothChile

Similar Articles

Cited By (4)