Long-lived macrophage reprogramming drives spike protein-mediated inflammasome activation in COVID-19.

Sebastian J Theobald, Alexander Simonis, Theodoros Georgomanolis, Christoph Kreer, Matthias Zehner, Hannah S Eisfeld, Marie-Christine Albert, Jason Chhen, Susanne Motameny, Florian Erger, Julia Fischer, Jakob J Malin, Jessica Gräb, Sandra Winter, Andromachi Pouikli, Friederike David, Boris Böll, Philipp Koehler, Kanika Vanshylla, Henning Gruell, Isabelle Suárez, Michael Hallek, Gerd Fätkenheuer, Norma Jung, Oliver A Cornely, Clara Lehmann, Peter Tessarz, Janine Altmüller, Peter Nürnberg, Hamid Kashkar, Florian Klein, Manuel Koch, Jan Rybniker
Author Information
  1. Sebastian J Theobald: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
  2. Alexander Simonis: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany. ORCID
  3. Theodoros Georgomanolis: Faculty of Medicine and University Hospital of Cologne, Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany. ORCID
  4. Christoph Kreer: Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany. ORCID
  5. Matthias Zehner: Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
  6. Hannah S Eisfeld: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
  7. Marie-Christine Albert: Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
  8. Jason Chhen: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
  9. Susanne Motameny: Faculty of Medicine and University Hospital of Cologne, Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany. ORCID
  10. Florian Erger: Faculty of Medicine and University Hospital of Cologne, Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany.
  11. Julia Fischer: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany. ORCID
  12. Jakob J Malin: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany. ORCID
  13. Jessica Gräb: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
  14. Sandra Winter: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
  15. Andromachi Pouikli: Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, Cologne, Germany.
  16. Friederike David: Faculty of Medicine and University Hospital of Cologne, Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany. ORCID
  17. Boris Böll: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
  18. Philipp Koehler: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
  19. Kanika Vanshylla: Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
  20. Henning Gruell: Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany. ORCID
  21. Isabelle Suárez: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
  22. Michael Hallek: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
  23. Gerd Fätkenheuer: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
  24. Norma Jung: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
  25. Oliver A Cornely: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
  26. Clara Lehmann: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
  27. Peter Tessarz: Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. ORCID
  28. Janine Altmüller: Faculty of Medicine and University Hospital of Cologne, Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany.
  29. Peter Nürnberg: Faculty of Medicine and University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
  30. Hamid Kashkar: Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
  31. Florian Klein: Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
  32. Manuel Koch: Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany.
  33. Jan Rybniker: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany. ORCID

Abstract

Innate immunity triggers responsible for viral control or hyperinflammation in COVID-19 are largely unknown. Here we show that the SARS-CoV-2 spike protein (S-protein) primes inflammasome formation and release of mature interleukin-1β (IL-1β) in macrophages derived from COVID-19 patients but not in macrophages from healthy SARS-CoV-2 naïve individuals. Furthermore, longitudinal analyses reveal robust S-protein-driven inflammasome activation in macrophages isolated from convalescent COVID-19 patients, which correlates with distinct epigenetic and gene expression signatures suggesting innate immune memory after recovery from COVID-19. Importantly, we show that S-protein-driven IL-1β secretion from patient-derived macrophages requires non-specific monocyte pre-activation in vivo to trigger NLRP3-inflammasome signaling. Our findings reveal that SARS-CoV-2 infection causes profound and long-lived reprogramming of macrophages resulting in augmented immunogenicity of the SARS-CoV-2 S-protein, a major vaccine antigen and potent driver of adaptive and innate immune signaling.

Keywords

References

  1. Nucleic Acids Res. 2019 Jan 8;47(D1):D155-D162 [PMID: 30423142]
  2. Elife. 2017 Jan 16;6: [PMID: 28079019]
  3. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  4. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  5. J Virol. 2004 Aug;78(15):7867-73 [PMID: 15254159]
  6. Immunity. 2020 Jul 14;53(1):19-25 [PMID: 32610079]
  7. Mucosal Immunol. 2018 Jul;11(4):1265-1278 [PMID: 29545648]
  8. Biotechnol J. 2015 Apr;10(4):647-53 [PMID: 25650551]
  9. Front Immunol. 2019 Apr 17;10:799 [PMID: 31057539]
  10. Nat Rev Immunol. 2020 Jun;20(6):335-337 [PMID: 32393823]
  11. J Exp Med. 2017 Jul 3;214(7):1913-1923 [PMID: 28606987]
  12. Lancet. 2020 Mar 28;395(10229):1033-1034 [PMID: 32192578]
  13. Science. 2016 Apr 22;352(6284):aaf1098 [PMID: 27102489]
  14. Int J Mol Sci. 2017 Oct 23;18(10): [PMID: 29065550]
  15. Science. 2020 Mar 13;367(6483):1260-1263 [PMID: 32075877]
  16. Nucleic Acids Res. 2016 Nov 16;44(20):e153 [PMID: 27484474]
  17. Int Immunol. 1993 Nov;5(11):1383-92 [PMID: 8260452]
  18. Cell Metab. 2017 Jul 5;26(1):71-93 [PMID: 28683296]
  19. Cell Host Microbe. 2020 Aug 12;28(2):322-334.e5 [PMID: 32544459]
  20. Cell Host Microbe. 2018 Jan 10;23(1):89-100.e5 [PMID: 29324233]
  21. Nat Immunol. 2017 Jun;18(6):622-632 [PMID: 28459433]
  22. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  23. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  24. J Exp Med. 2021 Mar 1;218(3): [PMID: 33231615]
  25. PLoS Pathog. 2014 Nov 20;10(11):e1004509 [PMID: 25412102]
  26. PLoS Pathog. 2013;9(5):e1003392 [PMID: 23737748]
  27. J Leukoc Biol. 2014 Oct;96(4):591-600 [PMID: 25024400]
  28. Nat Biotechnol. 2020 Mar;38(3):276-278 [PMID: 32055031]
  29. Nat Med. 2015 Mar;21(3):248-55 [PMID: 25686105]
  30. Nature. 2006 Mar 9;440(7081):228-32 [PMID: 16407890]
  31. Virus Res. 2009 Jun;142(1-2):19-27 [PMID: 19185596]
  32. J Immunol. 2014 Jun 15;192(12):5974-83 [PMID: 24795455]
  33. Nat Immunol. 2000 Nov;1(5):398-401 [PMID: 11062499]
  34. PLoS One. 2016 Jul 22;11(7):e0159724 [PMID: 27447824]
  35. Immunity. 2020 Jun 16;52(6):910-941 [PMID: 32505227]
  36. N Engl J Med. 2020 Sep 10;383(11):1078-1080 [PMID: 32905684]
  37. Nature. 2008 Jun 19;453(7198):1122-6 [PMID: 18496530]
  38. Mol Cell. 2013 Jan 24;49(2):331-8 [PMID: 23246432]
  39. Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16587-16595 [PMID: 32571934]
  40. Nat Rev Immunol. 2020 Jun;20(6):355-362 [PMID: 32376901]
  41. Mol Immunol. 2014 Nov;62(1):29-36 [PMID: 24937178]
  42. Lancet Rheumatol. 2020 Jul;2(7):e393-e400 [PMID: 32835245]
  43. Mucosal Immunol. 2019 Jul;12(4):958-968 [PMID: 31089187]
  44. Nat Rev Immunol. 2019 Aug;19(8):477-489 [PMID: 31036962]
  45. Int J Mycobacteriol. 2013 Sep;2(3):128-34 [PMID: 26785980]
  46. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  47. Nat Immunol. 2016 Mar;17(3):250-8 [PMID: 26642356]
  48. Nat Biotechnol. 2017 Apr 11;35(4):316-319 [PMID: 28398311]
  49. Front Immunol. 2018 Jun 11;9:1298 [PMID: 29942307]
  50. EMBO Mol Med. 2021 Aug 9;13(8):e14150 [PMID: 34133077]
  51. Nature. 2018 Jul;559(7712):114-119 [PMID: 29950719]
  52. Cancer Cell. 2020 Nov 9;38(5):661-671.e2 [PMID: 32997958]
  53. J Hum Genet. 2013 Jul;58(7):439-45 [PMID: 23739122]
  54. Cell Death Dis. 2019 Dec 2;10(12):906 [PMID: 31787755]
  55. Nat Rev Immunol. 2016 Jul;16(7):407-20 [PMID: 27291964]
  56. Nature. 2016 Feb 18;530(7590):354-7 [PMID: 26814970]
  57. PLoS Pathog. 2018 Dec 20;14(12):e1007390 [PMID: 30571771]
  58. Lancet Rheumatol. 2020 Jun;2(6):e325-e331 [PMID: 32501454]
  59. Cell Stem Cell. 2020 May 7;26(5):657-674.e8 [PMID: 32169166]
  60. Curr Opin Immunol. 2016 Oct;42:76-82 [PMID: 27326654]

Grants

  1. TTU 02.806/Deutsches Zentrum für Infektionsforschung (DZIF)
  2. TTU 02.905/Deutsches Zentrum für Infektionsforschung (DZIF)
  3. RY 159/3-1/Deutsche Forschungsgemeinschaft (DFG)
  4. INST 216/981-1/Deutsche Forschungsgemeinschaft (DFG)
  5. DFG FOR2722/Deutsche Forschungsgemeinschaft (DFG)
  6. FI 773/15-1/Deutsche Forschungsgemeinschaft (DFG)
  7. SFB1403/Deutsche Forschungsgemeinschaft (DFG)
  8. 01KX2021/NaFoUniMedCovid19 network

MeSH Term

COVID-19
Humans
Immunity, Innate
Inflammasomes
Interleukin-1beta
Macrophages
NLR Family, Pyrin Domain-Containing 3 Protein
SARS-CoV-2
Spike Glycoprotein, Coronavirus

Chemicals

Inflammasomes
Interleukin-1beta
NLR Family, Pyrin Domain-Containing 3 Protein
Spike Glycoprotein, Coronavirus
spike protein, SARS-CoV-2

Word Cloud

Similar Articles

Cited By