Flexible parametric copula modeling approaches for clustered survival data.

Sookhee Kwon, Il Do Ha, Jia-Han Shih, Takeshi Emura
Author Information
  1. Sookhee Kwon: Department of Statistics, Pukyong National University, Busan, South Korea. ORCID
  2. Il Do Ha: Department of Statistics, Pukyong National University, Busan, South Korea. ORCID
  3. Jia-Han Shih: Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.
  4. Takeshi Emura: Biostatistics Center, Kurume University, Kurume, Japan.

Abstract

Copula-based survival regression models, which consist of a copula function and marginal distribution (i.e., marginal survival function), have been widely used for analyzing clustered multivariate survival data. Archimedean copula functions are useful for modeling such dependence. For the likelihood inference, one-stage and two-stage estimation methods have been usually used. The two-stage procedure can give inefficient estimation results because of separate estimation of the marginal and copula's dependence parameters. The more efficient one-stage procedure has been mainly developed under a restrictive parametric assumption of marginal distribution due to complexity of the full likelihood with unknown marginal baseline hazard functions. In this paper, we propose a flexible parametric Archimedean copula modeling approach using a one-stage likelihood procedure. In order to reduce the complexity of the full likelihood, the unknown marginal baseline hazards are modeled based on a cubic M-spline basis function that does not require a specific parametric form. Simulation results demonstrate that the proposed one-stage estimation method gives a consistent estimator and also provides more efficient results over existing one- and two-stage methods. The new method is illustrated with three clinical data sets. The Appendix provides an R function so that the proposed method becomes directly accessible to interested readers.

Keywords

References

  1. Hougaard P. Analysis of Multivariate Survival Data. New York: Springer; 2000.
  2. Ha ID, Jeong JH, Lee Y. Statistical Modelling of Survival Data with Random Effects: h-Likelihood Approach. Singapore: Springer; 2017.
  3. Emura T, Matsui S, Rondeau V. Survival Analysis with Correlated Endpoints; Joint Frailty-Copula Models. JSS Research Series in Statistics, Springe; 2019.
  4. Goethals T, Janssen P, Duchateau L. Frailty models and copulas: similarities and differences. J Appl Stat. 2008;35:1071-1079.
  5. Duchateau L, Janssen P. The Frailty Model. Berlin: Springer; 2008.
  6. Ha ID, Lee Y. Estimating frailty models via Poisson hierarchical generalized linear models. J Comput Graph Stat. 2003;12:663-681.
  7. Genest C, Ghoudi K, Rivest LPA. Semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika. 1995;82:543-552.
  8. Kim G, Silvapulle MJ, Silvapulle P. Comparison of semiparametric and parametric methods for estimating copulas. Comput Stat Data Anal. 2007;51:2836-2850.
  9. Shih JH, Louis TA. Inferences on the association parameter in copula models for bivariate survival data. Biometrics. 1995;51:1384-1399.
  10. Andersen EW. Two-stage estimation in copula models used in family studies. Lifetime Data Anal. 2005;11:333-350.
  11. Marra G, Radice R. Copula link-based additive models for right-censored event time data. J Am Statist Ass. 2020;115:886-895.
  12. Cheng G, Zhou L, Chen X, Huang JZ. Efficient estimation of semiparametric copula models for bivariate survival data. J Multivariate Anal. 2014;123:330-344.
  13. Romeo J, Meyer R, Gallardo D. Bayesian bivariate survival analysis using the power variance function copula. Lifetime Data Anal. 2018;24:355-383.
  14. Chen X, Fan Y, Tsyrennikov V. Efficient estimation of semiparametric multivariate copula models. J Am Statist Ass. 2006;101:1228-1240.
  15. Prenen L, Braekers R, Duchateau L. Extending the Archimedean copula methodology to model multivariate survival data grouped in clusters of variable size. J Royal Stat Soc Ser B (Methodol). 2017;79:483-505.
  16. Breslow NE. Discussion on professor Cox's paper. J Royal Stat Soc Ser B (Methodol). 1972;34:216-217.
  17. Ramsay JO. Monotone regression splines in action. Stat Sci. 1988;3(4):425-441.
  18. Emura T, Nakatochi M, Murotani K, Rondeau V. A joint frailty-copula model between tumour progression and death for meta-analysis. Stat Methods Med Res. 2017;26(6):2649-2666.
  19. Emura T, Shih JH, Ha ID, Wilke RA. Comparison of the marginal hazard model and the sub-distribution hazard model for competing risks under an assumed copula. Stat Methods Med Res. 2020;29:2307-2327.
  20. McGilchrist CA, Aisbett CW. Regression with frailty in survival analysis. Biometrics. 1991;47:461-466.
  21. Fleming TR, Harrington DP. Counting Processes and Survival Analysis. New York: Wiley; 1991.
  22. Oddens J, Brausi M, Sylvester R, et al. Final results of an EORTC-GU cancers group randomized study of maintenance bacillus Calmette-Guérin in intermediate- and high-risk Ta, T1 papillary carcinoma of the urinary bladder: one-third dose versus full dose and 1 year versus 3 years of maintenance. Eur Urol. 2013;63:462-472.
  23. Joe H. Multivariate Models and Dependence Concepts. New York: Chapman and Hall; 1997.
  24. Gumbel EJ. Distribution des valeurs extremes en plusieurs dimensions. Publications de l'Institut de Statistique de L'Université de Paris. 1960;9:171-173.
  25. Lu M, Zhang Y, Huang J. Estimation of the mean function with panel count data using monotone polynomial splines. Biometrika. 2007;94:705-718.
  26. Commenges D, Jacqmin-Gadda H. Dynamical Biostatistical Models. London: Chapman and Hall; 2016.
  27. Shih JH, Emura T. Penalized Cox regression with a five-parameter spline model. Commun Stat Theory Methods. 2020. https://www.tandfonline.com/doi/full/10.1080/03610926.2020.1772305.
  28. Emura T. Joint.Cox: Joint Frailty-Copula Models for Tumour Progression and Death in Meta-Analysis; CRAN. 2019.
  29. Cox DR. Regression models and life-tables. J Royal Stat Soc Ser B (Methodol). 1972;34(2):187-202.
  30. Grenander U. Abstract Inference. New York: Wiley; 1981.
  31. Geman S, Hwang CR. Nonparmetric maximum likelihood estimation by the method of sieves. Ann Stat. 1982;10:401-414.
  32. Ma L, Hu T, Sun J. Sieve maximum likelihood regression analysis of dependent current status data. Biometrika. 2015;102:731-738.
  33. Chen X, Hu T, Sun J. Sieve maximum likelihood estimation for the proportional hazards model under informative censoring. Comput Stat Data Anal. 2017;112:224-234.
  34. Wei LJ, Lin DY, Weissfeld L. Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J Am Statist Ass. 1989;84:1065-1073.
  35. Spiekerman CF, Lin DY. Marginal regression models for multivariate failure time data. J Am Statist Ass. 1998;93:1164-1175.
  36. Lin DY. Cox regression analysis of multivariate failure time data: the marginal approach. Statist Med. 1994;13:2233-2247.
  37. Ha ID, Kim JM, Emura T. Profile likelihood approaches for semiparametric copula and frailty models for clustered survival data. J Appl Stat. 2019;46:2553-2571.
  38. Marshall AW, Olkin I. Families of multivariate distributions. J Am Statist Ass. 1988;83:834-841.
  39. Liu D, Kalbfleish JD, Douglas SE. A positive stable frailty model for clustered failure time data with covariate-dependent frailty. Biostatistics. 2011;67:8-17.
  40. Park E, Kwon S, Kwon J, Sylvester R, Ha ID. Penalized h-likelihood approach for variable selection in AFT random-effect models. Stat Neerl. 2020;74:52-71.
  41. Sun T, Ding Y. Copula-based semiparametric regression method for bivariate data under general interval censoring. Biostatistics. 2021;22:315-330.
  42. Gribkova S, Lopez O. Non-parametric copula estimation under bivariate censoring. Scand J Stat. 2015;42:925-946.

MeSH Term

Computer Simulation
Likelihood Functions
Research Design

Word Cloud

Created with Highcharts 10.0.0copulamarginalestimationone-stagesurvivalfunctionlikelihoodtwo-stageparametricdataArchimedeanmodelingprocedureresultsmethoddistributionusedclusteredfunctionsdependencemethodsefficientcomplexityfullunknownbaselineM-splineproposedprovidesCopula-basedregressionmodelsconsistiewidelyanalyzingmultivariateusefulinferenceusuallycangiveinefficientseparatecopula'sparametersmainlydevelopedrestrictiveassumptionduehazardpaperproposeflexibleapproachusingorderreducehazardsmodeledbasedcubicbasisrequirespecificformSimulationdemonstrategivesconsistentestimatoralsoexistingone-newillustratedthreeclinicalsetsAppendixRbecomesdirectlyaccessibleinterestedreadersFlexibleapproachesmodel

Similar Articles

Cited By

No available data.