Machine learning applications for COVID-19 outbreak management.

Arash Heidari, Nima Jafari Navimipour, Mehmet Unal, Shiva Toumaj
Author Information
  1. Arash Heidari: Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
  2. Nima Jafari Navimipour: Department of Computer Engineering, Kadir Has University, Istanbul, Turkey. ORCID
  3. Mehmet Unal: Department of Computer Engineering, Nisantasi University, Istanbul, Turkey.
  4. Shiva Toumaj: Urmia University of Medical Sciences, Urmia, Iran.

Abstract

Recently, the COVID-19 epidemic has resulted in millions of deaths and has impacted practically every area of human life. Several machine learning (ML) approaches are employed in the medical field in many applications, including detecting and monitoring patients, notably in COVID-19 management. Different medical imaging systems, such as computed tomography (CT) and X-ray, offer ML an excellent platform for combating the pandemic. Because of this need, a significant quantity of study has been carried out; thus, in this work, we employed a systematic literature review (SLR) to cover all aspects of outcomes from related papers. Imaging methods, survival analysis, forecasting, economic and geographical issues, monitoring methods, medication development, and hybrid apps are the seven key uses of applications employed in the COVID-19 pandemic. Conventional neural networks (CNNs), long short-term memory networks (LSTM), recurrent neural networks (RNNs), generative adversarial networks (GANs), autoencoders, random forest, and other ML techniques are frequently used in such scenarios. Next, cutting-edge applications related to ML techniques for pandemic medical issues are discussed. Various problems and challenges linked with ML applications for this pandemic were reviewed. It is expected that additional research will be conducted in the upcoming to limit the spread and catastrophe management. According to the data, most papers are evaluated mainly on characteristics such as flexibility and accuracy, while other factors such as safety are overlooked. Also, Keras was the most often used library in the research studied, accounting for 24.4 percent of the time. Furthermore, medical imaging systems are employed for diagnostic reasons in 20.4 percent of applications.

Keywords

References

  1. Med Image Anal. 2021 Oct;73:102159 [PMID: 34303892]
  2. Sci Rep. 2022 Jan 17;12(1):810 [PMID: 35039533]
  3. PeerJ Comput Sci. 2021 May 10;7:e539 [PMID: 34084936]
  4. Int J Imaging Syst Technol. 2022 Jan;32(1):12-25 [PMID: 34898850]
  5. Expert Syst Appl. 2022 Mar 15;190:116243 [PMID: 34815623]
  6. Knowl Based Syst. 2021 Sep 27;228:107242 [PMID: 36570870]
  7. Smart Health (Amst). 2022 Mar;23:100242 [PMID: 34926779]
  8. Comput Struct Biotechnol J. 2021 Dec 05;20:187-192 [PMID: 34900126]
  9. Sci Rep. 2021 Apr 29;11(1):9263 [PMID: 33927287]
  10. Health Place. 2022 Mar;74:102744 [PMID: 35114614]
  11. Sustain Cities Soc. 2022 Feb;77:103557 [PMID: 34840935]
  12. Int J Imaging Syst Technol. 2021 Dec;31(4):1775-1791 [PMID: 34518739]
  13. Curr Probl Cardiol. 2023 May;48(5):101108 [PMID: 35016988]
  14. Comput Biol Med. 2022 Mar;142:105210 [PMID: 35026574]
  15. IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2775-2780 [PMID: 33705321]
  16. Sci Rep. 2021 Jul 12;11(1):14353 [PMID: 34253822]
  17. Biomed Signal Process Control. 2022 Feb;72:103326 [PMID: 34777557]
  18. IEEE Trans Serv Comput. 2021 Feb 23;15(3):1220-1232 [PMID: 35936760]
  19. J Res Med Sci. 2021 May 27;26:34 [PMID: 34345245]
  20. Sensors (Basel). 2021 Nov 12;21(22): [PMID: 34833616]
  21. IEEE Access. 2021 Jan 25;9:20235-20254 [PMID: 34786304]
  22. Expert Syst Appl. 2022 May 1;193:116377 [PMID: 35002099]
  23. Comput Biol Med. 2022 Feb;141:105003 [PMID: 34782110]
  24. IEEE Trans Industr Inform. 2021 Feb 08;17(9):6539-6549 [PMID: 37981915]
  25. Comput Biol Med. 2022 Mar;142:105244 [PMID: 35077936]
  26. Public Health. 2022 Feb;203:23-30 [PMID: 35016072]
  27. Knowl Based Syst. 2022 Apr 6;241:108207 [PMID: 35068707]
  28. Inf Sci (N Y). 2021 Jun;561:211-229 [PMID: 33612854]
  29. Biomed Signal Process Control. 2022 Jan;71:103175 [PMID: 34539811]
  30. Expert Syst. 2022 Mar;39(3):e12759 [PMID: 34511689]
  31. Int J Imaging Syst Technol. 2022 Mar;32(2):462-475 [PMID: 35465214]
  32. Sci Rep. 2021 May 10;11(1):9887 [PMID: 33972584]
  33. IEEE Internet Things J. 2021 Mar 17;8(21):15906-15918 [PMID: 35582242]
  34. IEEE Trans Neural Netw Learn Syst. 2022 Dec;33(12):7126-7140 [PMID: 34115596]
  35. Sci Rep. 2022 Jan 10;12(1):328 [PMID: 35013370]
  36. Sensors (Basel). 2022 Feb 05;22(3): [PMID: 35161958]
  37. Biomed Signal Process Control. 2022 Jan;71:103182 [PMID: 34580596]
  38. Neural Comput Appl. 2023;35(19):13921-13934 [PMID: 34248288]
  39. Int J Environ Res Public Health. 2022 Feb 11;19(4): [PMID: 35206201]
  40. Sci Rep. 2022 Jan 24;12(1):1234 [PMID: 35075153]
  41. Appl Soft Comput. 2021 Feb;99:106859 [PMID: 33162872]
  42. Comput Biol Med. 2022 Apr;143:105233 [PMID: 35180499]
  43. IEEE Internet Things J. 2021 Feb 01;8(21):15965-15976 [PMID: 35782175]
  44. IEEE Trans Artif Intell. 2022 Jan 11;4(1):44-59 [PMID: 36908643]
  45. Neural Comput Appl. 2021;33(10):4915-4928 [PMID: 32836902]
  46. PeerJ Comput Sci. 2021 Mar 3;7:e353 [PMID: 33817003]
  47. Decis Support Syst. 2022 Nov;162:113752 [PMID: 35185227]
  48. Comput Biol Med. 2022 Mar;142:105192 [PMID: 34998220]
  49. PeerJ Comput Sci. 2021 Jul 21;7:e613 [PMID: 34395859]
  50. Sci Rep. 2021 Aug 9;11(1):16075 [PMID: 34373530]
  51. Expert Syst Appl. 2022 Jun 1;195:116554 [PMID: 35136286]
  52. SN Comput Sci. 2022;3(2):164 [PMID: 35194582]
  53. Comput Biol Med. 2022 Feb;141:105134 [PMID: 34971978]
  54. AI Soc. 2020;35(3):761-765 [PMID: 32346223]
  55. J Pharm Anal. 2022 Apr;12(2):193-204 [PMID: 35003825]
  56. Socioecon Plann Sci. 2022 Mar;80:101249 [PMID: 35125526]
  57. IEEE Internet Things J. 2021 Apr 01;8(21):16072-16082 [PMID: 35782179]
  58. J King Saud Univ Sci. 2022 Apr;34(3):101898 [PMID: 35185304]
  59. PeerJ Comput Sci. 2021 May 26;7:e551 [PMID: 34141883]
  60. Signal Image Video Process. 2022;16(6):1455-1462 [PMID: 35096182]
  61. Soft comput. 2022;26(2):645-664 [PMID: 34815733]
  62. Sensors (Basel). 2022 Feb 05;22(3): [PMID: 35161951]
  63. Neural Comput Appl. 2022;34(10):8253-8274 [PMID: 35095212]
  64. Neurocomputing (Amst). 2022 Apr 7;481:202-215 [PMID: 35079203]
  65. Sci Rep. 2022 Jan 14;12(1):724 [PMID: 35031631]
  66. Appl Intell (Dordr). 2021;51(12):8579-8597 [PMID: 34764592]
  67. Sci Rep. 2021 Feb 5;11(1):3238 [PMID: 33547334]
  68. Interdiscip Sci. 2022 Jun;14(2):452-470 [PMID: 35133633]
  69. Expert Syst Appl. 2022 Jun 1;195:116611 [PMID: 35153389]
  70. Comput Biol Med. 2022 Mar;142:105214 [PMID: 35030496]
  71. Sci Rep. 2022 Jan 17;12(1):815 [PMID: 35039620]
  72. Diabetes Metab Syndr. 2020 Jul - Aug;14(4):337-339 [PMID: 32305024]
  73. Pattern Recognit Lett. 2021 Nov;151:267-274 [PMID: 34566223]
  74. Curr Probl Cardiol. 2023 Mar;48(3):101034 [PMID: 34718034]
  75. Expert Syst Appl. 2022 Apr 15;192:116366 [PMID: 34937995]
  76. Comput Biol Med. 2022 Feb;141:105153 [PMID: 34954610]
  77. IEEE Access. 2021 May 11;9:72420-72450 [PMID: 34786314]
  78. Chaos Solitons Fractals. 2021 Jan;142:110511 [PMID: 33281305]
  79. Comput Biol Med. 2022 Mar;142:105166 [PMID: 35077935]
  80. Infect Dis Model. 2022 Mar;7(1):170-183 [PMID: 34977438]
  81. IEEE Internet Things J. 2020 Nov 17;8(21):16002-16013 [PMID: 35782178]
  82. J Infect Public Health. 2022 Jan;15(1):75-93 [PMID: 34836799]
  83. Signal Image Video Process. 2021;15(5):959-966 [PMID: 33432267]
  84. Biomed Signal Process Control. 2022 Feb;72:103333 [PMID: 34804190]
  85. Nat Commun. 2021 Feb 16;12(1):1058 [PMID: 33594046]
  86. Sci Rep. 2022 Feb 2;12(1):1716 [PMID: 35110593]
  87. Pattern Recognit. 2022 Apr;124:108452 [PMID: 34848897]
  88. J Mol Graph Model. 2022 Jan;110:108045 [PMID: 34688160]
  89. Patterns (N Y). 2022 Jan 14;3(1):100396 [PMID: 34778851]
  90. J Ambient Intell Humaniz Comput. 2022 Feb 1;:1-13 [PMID: 35126765]
  91. Sci Data. 2021 Apr 29;8(1):121 [PMID: 33927208]
  92. Knowl Based Syst. 2021 Jan 5;212:106647 [PMID: 33519100]
  93. Emerg Radiol. 2021 Jun;28(3):497-505 [PMID: 33523309]
  94. Appl Soft Comput. 2021 Dec;113:107945 [PMID: 34630000]
  95. Comput Biol Med. 2022 Jun;145:105461 [PMID: 35366470]
  96. Sci Rep. 2022 Feb 3;12(1):1849 [PMID: 35115652]
  97. Sci Rep. 2022 Feb 8;12(1):2055 [PMID: 35136120]
  98. Sustain Cities Soc. 2021 Jun;69:102777 [PMID: 33619448]

Word Cloud

Created with Highcharts 10.0.0COVID-19applicationsMLemployedmedicalpandemicnetworkslearningmanagementimagingsystemspapersmethodsissuesneuralusedresearch4percentMachineRecentlyepidemicresultedmillionsdeathsimpactedpracticallyeveryareahumanlifeSeveralmachineapproachesfieldmanyincludingdetectingmonitoring patientsnotablyDifferentcomputedtomographyCTX-rayofferexcellentplatformcombatingneedsignificantquantitystudycarriedthusworksystematicliteraturereviewSLRcoveraspectsoutcomesrelatedImagingsurvivalanalysisforecastingeconomicgeographicalmonitoringmedicationdevelopmenthybridappssevenkeyusesConventionalCNNslongshort-termmemoryLSTMrecurrentRNNsgenerativeadversarialGANsautoencodersrandomforesttechniquesfrequentlyscenariosNextcutting-edgeapplications relatedML techniquesdiscussedVariousproblemschallengeslinkedreviewedexpectedadditionalwillconductedupcominglimitspreadcatastropheAccordingdataevaluatedmainlycharacteristicsflexibilityaccuracyfactorssafetyoverlookedAlsoKerasoftenlibrarystudiedaccounting24timeFurthermorediagnosticreasons20outbreakApplicationsMedicalOutbreak

Similar Articles

Cited By (15)