Systemically targeted cancer immunotherapy and gene delivery using transmorphic particles.

Paladd Asavarut, Sajee Waramit, Keittisak Suwan, Gert J K Marais, Aitthiphon Chongchai, Surachet Benjathummarak, Mariam Al-Bahrani, Paula Vila-Gomez, Matthew Williams, Prachya Kongtawelert, Teerapong Yata, Amin Hajitou
Author Information
  1. Paladd Asavarut: Cancer Phagotherapy, Department of Brain Sciences, Imperial College London, London, UK.
  2. Sajee Waramit: Cancer Phagotherapy, Department of Brain Sciences, Imperial College London, London, UK.
  3. Keittisak Suwan: Cancer Phagotherapy, Department of Brain Sciences, Imperial College London, London, UK. ORCID
  4. Gert J K Marais: Cancer Phagotherapy, Department of Brain Sciences, Imperial College London, London, UK.
  5. Aitthiphon Chongchai: Cancer Phagotherapy, Department of Brain Sciences, Imperial College London, London, UK. ORCID
  6. Surachet Benjathummarak: Cancer Phagotherapy, Department of Brain Sciences, Imperial College London, London, UK. ORCID
  7. Mariam Al-Bahrani: Cancer Phagotherapy, Department of Brain Sciences, Imperial College London, London, UK.
  8. Paula Vila-Gomez: Cancer Phagotherapy, Department of Brain Sciences, Imperial College London, London, UK. ORCID
  9. Matthew Williams: Department of Surgery and Cancer, Imperial College London, London, UK.
  10. Prachya Kongtawelert: Thailand Excellence Centre for Tissue Engineering and Stem Cells, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
  11. Teerapong Yata: Cancer Phagotherapy, Department of Brain Sciences, Imperial College London, London, UK.
  12. Amin Hajitou: Cancer Phagotherapy, Department of Brain Sciences, Imperial College London, London, UK. ORCID

Abstract

Immunotherapy is a powerful tool for cancer treatment, but the pleiotropic nature of cytokines and immunological agents strongly limits clinical translation and safety. To address this unmet need, we designed and characterised a systemically targeted cytokine gene delivery system through transmorphic encapsidation of human recombinant adeno-associated virus DNA using coat proteins from a tumour-targeted bacteriophage (phage). We show that Transmorphic Phage/AAV (TPA) particles provide superior delivery of transgenes over current phage-derived vectors through greater diffusion across the extracellular space and improved intracellular trafficking. We used TPA to target the delivery of cytokine-encoding transgenes for interleukin-12 (IL12), and novel isoforms of IL15 and tumour necrosis factor alpha (TNF ) for tumour immunotherapy. Our results demonstrate selective and efficient gene delivery and immunotherapy against solid tumours in vivo, without harming healthy organs. Our transmorphic particle system provides a promising modality for safe and effective gene delivery, and cancer immunotherapies through cross-species complementation of two commonly used viruses.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):2466-71 [PMID: 26884209]
  2. Oncotarget. 2016 Aug 9;7(32):52135-52149 [PMID: 27437775]
  3. Nat Rev Genet. 2007 Aug;8(8):573-87 [PMID: 17607305]
  4. Cancer Gene Ther. 2021 Feb;28(1-2):5-17 [PMID: 32457487]
  5. Mol Ther Nucleic Acids. 2014 Aug 12;3:e185 [PMID: 25118171]
  6. Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4453-8 [PMID: 21368213]
  7. Front Immunol. 2020 Oct 15;11:575597 [PMID: 33178203]
  8. J Mark Access Health Policy. 2021 Feb 28;9(1):1889841 [PMID: 33708361]
  9. Int J Mol Sci. 2020 Oct 23;21(21): [PMID: 33114050]
  10. Hum Mol Genet. 2011 Apr 15;20(R1):R2-6 [PMID: 21531790]
  11. Br J Cancer. 2019 Jan;120(1):6-15 [PMID: 30413827]
  12. Cancers (Basel). 2018 Apr 21;10(4): [PMID: 29690504]
  13. Front Immunol. 2020 May 19;11:868 [PMID: 32508818]
  14. Nature. 1996 Mar 28;380(6572):364-6 [PMID: 8598934]
  15. J Transl Med. 2018 Aug 31;16(1):242 [PMID: 30170620]
  16. Cell Death Differ. 2003 Jan;10(1):45-65 [PMID: 12655295]
  17. Proc Natl Acad Sci U S A. 2012 May 15;109(20):7841-6 [PMID: 22547817]
  18. Cell Immunol. 1999 Dec 15;198(2):111-9 [PMID: 10648125]
  19. Mol Ther. 2001 Apr;3(4):476-84 [PMID: 11319907]
  20. EMBO Mol Med. 2022 Aug 8;14(8):e15418 [PMID: 35758207]
  21. J Chromatogr B Analyt Technol Biomed Life Sci. 2010 Jul 1;878(21):1855-9 [PMID: 20538529]
  22. Expert Opin Ther Targets. 2019 Apr;23(4):295-307 [PMID: 30856027]
  23. Hum Gene Ther Methods. 2012 Feb;23(1):18-28 [PMID: 22428977]
  24. Trends Biotechnol. 2010 Dec;28(12):591-5 [PMID: 20810181]
  25. Gene Ther. 2006 Sep;13(17):1300-8 [PMID: 16688207]
  26. Hum Gene Ther. 1998 Nov 1;9(16):2393-9 [PMID: 9829538]
  27. Drug Discov Today. 2019 Apr;24(4):949-954 [PMID: 30711576]
  28. Blood. 2003 Oct 1;102(7):2412-9 [PMID: 12791653]
  29. Nature. 1973 Nov 23;246(5430):221-3 [PMID: 4586796]
  30. PLoS One. 2009;4(3):e4972 [PMID: 19330034]
  31. Clin Cancer Res. 2018 Jun 15;24(12):2716-2718 [PMID: 29549160]
  32. Viruses. 2018 Apr 19;10(4): [PMID: 29671810]
  33. J Immunol Methods. 2009 Aug 31;348(1-2):83-94 [PMID: 19646987]
  34. Expert Opin Investig Drugs. 2008 Aug;17(8):1225-35 [PMID: 18616418]
  35. Nat Protoc. 2007;2(3):523-31 [PMID: 17406616]
  36. Nat Biotechnol. 2011 Mar;29(3):245-54 [PMID: 21390033]
  37. Cancer Res. 2002 Feb 15;62(4):977-81 [PMID: 11861367]
  38. Front Immunol. 2019 Aug 13;10:1906 [PMID: 31456803]
  39. Nat Methods. 2008 Feb;5(2):171-3 [PMID: 18204457]
  40. Methods Mol Biol. 2013;1059:13-24 [PMID: 23934830]
  41. FASEB J. 1999 Apr;13(6):727-34 [PMID: 10094933]
  42. Cell. 2015 Sep 24;163(1):39-53 [PMID: 26406370]
  43. Cell. 2006 Apr 21;125(2):385-98 [PMID: 16630824]
  44. Nat Rev Immunol. 2017 Nov;17(11):703-717 [PMID: 28757603]
  45. J Biol Chem. 2012 Oct 19;287(43):35849-59 [PMID: 22915587]
  46. Cancer Gene Ther. 2013 Jan;20(1):46-56 [PMID: 23154431]
  47. Nat Med. 2002 Feb;8(2):121-7 [PMID: 11821895]
  48. EMBO Mol Med. 2019 Apr;11(4): [PMID: 30808679]
  49. Viruses. 2015 Dec 08;7(12):6476-89 [PMID: 26670247]
  50. Mol Ther. 2020 Mar 4;28(3):709-722 [PMID: 31968213]
  51. Immunol Rev. 2010 Nov;238(1):233-46 [PMID: 20969596]
  52. DNA Cell Biol. 2003 Jan;22(1):11-8 [PMID: 12590733]
  53. Lancet Oncol. 2018 Jun;19(6):737-746 [PMID: 29778737]
  54. Trends Pharmacol Sci. 2012 Jan;33(1):35-41 [PMID: 22032984]
  55. Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5675-9 [PMID: 11960022]
  56. J Virol. 2000 Mar;74(5):2481-7 [PMID: 10666285]
  57. Nat Biotechnol. 2010 Mar;28(3):271-4 [PMID: 20190738]
  58. J Control Release. 2016 Oct 28;240:287-301 [PMID: 26796040]
  59. Lancet. 2017 Aug 26;390(10097):849-860 [PMID: 28712537]
  60. Curr Pharm Biotechnol. 2001 Sep;2(3):217-23 [PMID: 11530876]
  61. Cancers (Basel). 2013 Oct 23;5(4):1271-305 [PMID: 24202446]
  62. Mol Oncol. 2013 Feb;7(1):55-66 [PMID: 22951279]
  63. Curr Pharm Biotechnol. 2002 Mar;3(1):45-57 [PMID: 11883506]
  64. J Biol Chem. 2013 Jun 21;288(25):18093-103 [PMID: 23649624]
  65. J Immunother Cancer. 2018 Nov 23;6(1):128 [PMID: 30470252]
  66. Oncotarget. 2017 Jan 24;8(4):7175-7180 [PMID: 27764780]
  67. J Immunol. 2019 Oct 15;203(8):2031-2041 [PMID: 31591259]
  68. Cytotherapy. 2020 Apr;22(4):214-226 [PMID: 32305113]
  69. Nucleic Acids Res. 2006;34(21):e145 [PMID: 17088290]
  70. Mol Cancer. 2015 Jun 03;14:110 [PMID: 26037383]
  71. Viruses. 2013 Oct 22;5(10):2561-72 [PMID: 24153059]
  72. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  73. Mol Ther. 2008 Jun;16(6):1073-80 [PMID: 18414476]
  74. EMBO J. 1994 Feb 1;13(3):692-8 [PMID: 7508862]
  75. Cancer. 2009 Jan 1;115(1):128-39 [PMID: 19090007]
  76. CA Cancer J Clin. 2020 Mar;70(2):86-104 [PMID: 31944278]
  77. Nat Rev Drug Discov. 2019 Mar;18(3):175-196 [PMID: 30622344]

Grants

  1. 25887/Cancer Research UK
  2. G0701159/Medical Research Council
  3. MR/T029226/1/Medical Research Council
  4. C31277/A25887/Cancer Research UK

MeSH Term

Bacteriophages
Cytokines
Dependovirus
Gene Transfer Techniques
Genetic Vectors
Humans
Immunotherapy
Neoplasms
Transgenes

Chemicals

Cytokines

Word Cloud

Created with Highcharts 10.0.0deliverygenecancerimmunotherapytargetedtransmorphiccytokinessystemusingbacteriophageTPAparticlestransgenesusedtumourImmunotherapypowerfultooltreatmentpleiotropicnatureimmunologicalagentsstronglylimitsclinicaltranslationsafetyaddressunmetneeddesignedcharacterisedsystemicallycytokineencapsidationhumanrecombinantadeno-associatedvirusDNAcoatproteinstumour-targetedphageshowTransmorphicPhage/AAVprovidesuperiorcurrentphage-derivedvectorsgreaterdiffusionacrossextracellularspaceimprovedintracellulartraffickingtargetcytokine-encodinginterleukin-12IL12novelisoformsIL15necrosisfactoralphaTNFresultsdemonstrateselectiveefficientsolidtumoursin vivowithoutharminghealthyorgansparticleprovidespromisingmodalitysafeeffectiveimmunotherapiescross-speciescomplementationtwocommonlyvirusesSystemicallyvectordevelopment

Similar Articles

Cited By (14)