Kimesurface Representation and Tensor Linear Modeling of Longitudinal Data.

Rongqian Zhang, Yupeng Zhang, Yuyao Liu, Yunjie Guo, Yueyang Shen, Daxuan Deng, Yongkai Joshua Qiu, Ivo D Dinov
Author Information
  1. Rongqian Zhang: Department of Statistics, University of Michigan, Ann Arbor, MI 48109, USA.
  2. Yupeng Zhang: Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA.
  3. Yuyao Liu: Department of Statistics, University of Michigan, Ann Arbor, MI 48109, USA.
  4. Yunjie Guo: Electrical Computer Engineering Division, University of Michigan, Ann Arbor, MI 48109, USA.
  5. Yueyang Shen: Electrical Computer Engineering Division, University of Michigan, Ann Arbor, MI 48109, USA.
  6. Daxuan Deng: Electrical Computer Engineering Division, University of Michigan, Ann Arbor, MI 48109, USA.
  7. Yongkai Joshua Qiu: Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA.
  8. Ivo D Dinov: Statistics Online Computational Resource, Department of Health Behavior and Biological Sciences, University of Michigan, Ann Arbor, MI 48109, USA.

Abstract

Many modern techniques for analyzing time-varying longitudinal data rely on parametric models to interrogate the time-courses of univariate or multivariate processes. Typical analytic objectives include utilizing retrospective observations to model current trends, predict prospective trajectories, derive categorical traits, or characterize various relations. Among the many mathematical, statistical, and computational strategies for analyzing longitudinal data, tensor-based linear modeling offers a unique algebraic approach that encodes different characterizations of the observed measurements in terms of state indices. This paper introduces a new method of representing, modeling, and analyzing repeated-measurement longitudinal data using a generalization of event order from the positive reals to the complex plane. Using complex time (kime), we transform classical time-varying signals as 2D manifolds called kimesurfaces. This kime characterization extends the classical protocols for analyzing time-series data and offers unique opportunities to design novel inference, prediction, classification, and regression techniques based on the corresponding kimesurface manifolds. We define complex time and illustrate alternative time-series to kimesurface transformations. Using the Laplace transform and its inverse, we demonstrate the bijective mapping between time-series and kimesurfaces. A proposed general tensor regression based linear model is validated using functional Magnetic Resonance Imaging (fMRI) data. This kimesurface representation method can be used with a wide range of machine learning algorithms, artificial intelligence tools, analytical approaches, and inferential techniques to interrogate multivariate, complex-domain, and complex-range longitudinal processes.

References

  1. J Comput Graph Stat. 2018;27(3):638-647 [PMID: 30337798]
  2. Neuroimage. 2006 Feb 1;29(3):1000-6 [PMID: 16139527]
  3. Neuroimage. 2011 May 15;56(2):826-36 [PMID: 20691274]
  4. Dev Cogn Neurosci. 2018 Oct;33:149-160 [PMID: 29456104]
  5. J Alzheimers Dis. 2012;31 Suppl 3:S169-88 [PMID: 22647262]
  6. Neuroinformatics. 2019 Jul;17(3):407-421 [PMID: 30460455]
  7. PLoS One. 2013 Nov 06;8(11):e77089 [PMID: 24223118]
  8. Int J Epidemiol. 2015 Feb;44(1):334-44 [PMID: 25604450]
  9. Monogr Soc Res Child Dev. 2017 Jun;82(2):46-66 [PMID: 28475250]
  10. J Neurosci Methods. 2015 Oct 30;254:27-35 [PMID: 26231620]
  11. Stat Methods Med Res. 2014 Feb;23(1):42-59 [PMID: 22523185]
  12. Neuroimage. 1995 Mar;2(1):45-53 [PMID: 9343589]
  13. J Magn Reson Imaging. 2007 Jun;25(6):1263-70 [PMID: 17520733]
  14. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5381-4 [PMID: 19963901]
  15. Stat Surv. 2010;4:1-39 [PMID: 20414472]
  16. Neuroimage. 2010 May 15;51(1):33-41 [PMID: 20152910]
  17. Stat Interface. 2010;3(2):235-252 [PMID: 21691445]
  18. PLoS One. 2020 Aug 28;15(8):e0228520 [PMID: 32857775]
  19. J Biopharm Stat. 2019 May 12;:1-2 [PMID: 31081455]
  20. PLoS One. 2014 Feb 28;9(2):e89470 [PMID: 24586801]
  21. PLoS One. 2017 Jul 14;12(7):e0180944 [PMID: 28708865]
  22. Circulation. 2008 Nov 4;118(19):2005-10 [PMID: 18981315]
  23. Nat Commun. 2018 Oct 1;9(1):4014 [PMID: 30275541]
  24. Neuroimage. 2008 Feb 1;39(3):1064-80 [PMID: 18037310]
  25. Med Image Anal. 2021 Aug;72:102089 [PMID: 34020082]

Grants

  1. R01 CA233487/NCI NIH HHS
  2. R01 MH121079/NIMH NIH HHS
  3. T32 GM141746/NIGMS NIH HHS
  4. UL1 TR002240/NCATS NIH HHS

Word Cloud

Created with Highcharts 10.0.0dataanalyzinglongitudinaltechniquescomplextime-serieskimesurfacetime-varyinginterrogatemultivariateprocessesmodellinearmodelingoffersuniquemethodusingUsingtimekimetransformclassicalmanifoldskimesurfacesregressionbasedManymodernrelyparametricmodelstime-coursesunivariateTypicalanalyticobjectivesincludeutilizingretrospectiveobservationscurrenttrendspredictprospectivetrajectoriesderivecategoricaltraitscharacterizevariousrelationsAmongmanymathematicalstatisticalcomputationalstrategiestensor-basedalgebraicapproachencodesdifferentcharacterizationsobservedmeasurementstermsstateindicespaperintroducesnewrepresentingrepeated-measurementgeneralizationeventorderpositiverealsplanesignals2DcalledcharacterizationextendsprotocolsopportunitiesdesignnovelinferencepredictionclassificationcorrespondingdefineillustratealternativetransformationsLaplaceinversedemonstratebijectivemappingproposedgeneraltensorvalidatedfunctionalMagneticResonanceImagingfMRIrepresentationcanusedwiderangemachinelearningalgorithmsartificialintelligencetoolsanalyticalapproachesinferentialcomplex-domaincomplex-rangeKimesurfaceRepresentationTensorLinearModelingLongitudinalData

Similar Articles

Cited By (2)