A systematic investigation of four ports MIMO antenna depending on flexible material for UWB networks.

Ahmed A Ibrahim, Mohamed I Ahmed, Mai F Ahmed
Author Information
  1. Ahmed A Ibrahim: Electronics and Communications Engineering Department, Minia University, El-Minia, Egypt. ahmedabdel_monem@mu.edu.eg.
  2. Mohamed I Ahmed: Microstrip Department, Electronics Research Institute, Giza, Egypt.
  3. Mai F Ahmed: Department of Electronics and Comm. Engineering, Faculty of Engineering, Zagazig University, Zagazig, Egypt.

Abstract

A flexible quad-port MIMO antenna with good isolation features with both flat and bending configurations is presented and investigated in this work. The single unit of the MIMO is composed of a crescent-shaped monopole antenna connected with a curved coplanar waveguide (CPW) fed to enhance the operating bandwidth. A thin and flexible Roger 3003 material with thickness = 0.13 mm, εr = 3, and tan δ = 0.001 is used. To improve the isolation between ports which in turn improves the performance of the MIMO system, the single unit antenna is repeated four times and placed orthogonal to each other. A 54 mm × 54 mm × 0.13 mm (0.63λo × 0.63λo × 0.0015λo @ 3.5 GHz) is the total size of the quad ports MIMO antenna. The flexible MIMO antennas in both flat and bending layouts are simulated, tested and the outcomes achieved S < - 10 dB from 3.5 GHz up to 11 GHz with mutual coupling ≤ - 17 dB between ports. The radiation patterns of the MIMO antenna are tested with 5 dB peak gain and with semi-omnidirectional and bidirectional patterns in both two planes. The Diversity Gain (DG) values ≥ 9.9 dB through the designed working band, Envelop Correlation Coefficient (ECC) lower than 0.03 from 3.5 GHz to 4 GHz and lower than 0.01 from 4 to 11 GHz, and Channel Capacity Loss (CCL) value ≤ 0.5 bit/s/Hz over the worked band are calculated and extracted in flat and bending configurations and achieved suitable values which support the suggested antenna in the UWB flexible networks.

References

  1. Hong, W., Baek, K. H. & Ko, S. Millimeter-wave 5G antennas for smartphones: Overview and experimental demonstration. IEEE Trans. Antennas Propag. 65(12), 6250–6261 (2017). [DOI: 10.1109/TAP.2017.2740963]
  2. Federal Communications Commission. Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems. First report and order, FCC-02 (2002).
  3. Ibrahim, A. & Ali, W. High isolation 4-element ACS-fed MIMO antenna with band notched feature for UWB communications. Int. J. Microw. Wirel. Technol. 2021, 1–11 (2021).
  4. Parameswari, S. & Chitra, C. Compact textile UWB antenna with hexagonal for biomedical communication. J. Ambient Intell. Hum. Comput. 2021, 1–8 (2021).
  5. Farahani, M. & Mohammad-Ali-Nezhad, S. A novel UWB printed monopole MIMO antenna with non-uniform transmission line using nonlinear model predictive. Eng. Sci. Technol. Int. J. 23(6), 1385–1396 (2020).
  6. Ahmed, M. I., Ahmed, M. F. & Seleem, H. Channel capacity and polarization diversity study for novel compact UWB. MIMO Antennas 16, 4 (2021).
  7. Srivastava, K., Kumar, S., Kanaujia, B. K. & Dwari, S. Design and packaging of ultra-wideband multiple-input-multiple-output/diversity antenna for wireless applications. Int. J. RF Microwave Comput. Aided Eng. 30(10), e22357 (2020). [DOI: 10.1002/mmce.22357]
  8. Iqbal, A. et al. Wideband circularly polarized MIMO antenna for high data wearable biotelemetric devices. IEEE Access 8, 17935–17944 (2020). [DOI: 10.1109/ACCESS.2020.2967397]
  9. Elfergani, I. et al. Low-profile and closely spaced four-element MIMO antenna for wireless body area networks. Electronics 9(2), 258 (2020). [DOI: 10.3390/electronics9020258]
  10. Ali, W. A. E. & Ibrahim, A. A. A compact double-sided MIMO antenna with an improved isolation for UWB applications. AEU-Int. J. Electron. Commun. 82, 7–13 (2017). [DOI: 10.1016/j.aeue.2017.07.031]
  11. Altaf, A. et al. Isolation improvement in UWB-MIMO antenna system using slotted stub. Electronics 9(10), 1582 (2020). [DOI: 10.3390/electronics9101582]
  12. Khan, M. S. et al. Planar, compact ultra-wideband polarisation diversity antenna array. IET Microwaves Antennas Propag. 9(15), 1761–1768 (2015). [DOI: 10.1049/iet-map.2015.0371]
  13. Aboelleil, H., Ibrahim, A. A. & Khalaf, A. A. M. A compact multiple-input multiple-output antenna with high isolation for wireless applications. Analog Integr. Circ. Sig. Process 108, 17–24 (2021). [DOI: 10.1007/s10470-020-01775-x]
  14. Srivastava, K., Kumar, A., Kanaujia, B. K., Dwari, S. & Kumar, S. A CPW-fed UWB MIMO antenna with integrated GSM band and dual band notches. Int. J. RF Microwave Comput. Aided Eng. 29(1), e21433 (2019). [DOI: 10.1002/mmce.21433]
  15. Saad, A. A. R. & Mohamed, H. A. Conceptual design of a compact four-element UWB MIMO slot antenna array. IET Microwaves Antennas Propag. 13(2), 208–215 (2019). [DOI: 10.1049/iet-map.2018.5163]
  16. Zhang, J. Y., Zhang, F. & Tian, W. P. Compact 4-port ACS-fed UWB-MIMO antenna with shared radiators. Prog. Electromagn. Res. Lett. 55(June), 81–88 (2015). [DOI: 10.2528/PIERL15062304]
  17. Gangwar, D., Sharma, A., Kanaujia, B. K., Singh, S. P. & Lay-Ekuakille, A. Characterization and performance measurement of low RCS wideband circularly polarized MIMO antenna for microwave sensing applications. IEEE Trans. Instrum. Meas. 69(6), 3847–3854 (2019). [DOI: 10.1109/TIM.2019.2936707]
  18. Iqbal, A., Saraereh, O. A., Ahmad, A. W. & Bashir, S. Mutual coupling reduction using F-shaped stubs in UWB-MIMO antenna. IEEE Access 6, 2755–2759 (2017). [DOI: 10.1109/ACCESS.2017.2785232]
  19. Roy, S., Ghosh, S., Pattanayak, S. S. & Chakarborty, U. Dual-polarized textile-based two/four element MIMO antenna with improved isolation for dual wideband application. Int. J. RF Microwave Comput. Aided Eng. 30(9), e22292 (2020). [DOI: 10.1002/mmce.22292]
  20. Rao, P. K. & Mishra, R. Elliptical shape flexible MIMO antenna with high isolation for breast cancer detection application. IETE J. Res. 2020, 1–9 (2020). [DOI: 10.1080/03772063.2020.1819887]
  21. Li, H., Sun, S., Wang, B. & Wu, F. Design of compact single-layer textile MIMO antenna for wearable applications. IEEE Trans. Antennas Propag. 66(6), 3136–3141 (2018). [DOI: 10.1109/TAP.2018.2811844]
  22. Li, W., Hei, Y., Grubb, P. M., Shi, X. & Chen, R. T. Compact inkjet-printed flexible MIMO antenna for UWB applications. IEEE Access 6, 50290–50298 (2018). [DOI: 10.1109/ACCESS.2018.2868707]
  23. Du, C. & Jin, G. A compact CPW-fed band-notched UWB-MIMO flexible antenna for WBAN application. J. Electromagn. Waves Appl. 35(8), 1046–1058 (2021). [DOI: 10.1080/09205071.2020.1868354]
  24. Blanch, S., Romeu, J. & Corbella, I. Exact representation of antenna system diversity performance from input parameter description. Electron. Lett. 39, 9 (2003). [DOI: 10.1049/el]
  25. Ibrahim, A. A. & Ali, W. A. E. High gain, wideband and low mutual coupling AMC-based millimeter wave MIMO antenna for 5G NR networks. AEU-Int. J. Electron. Commun. 142, 153990 (2021). [DOI: 10.1016/j.aeue.2021.153990]
  26. Ibrahim, A. A., Machac, J. & Shubair, R. M. Compact UWB MIMO antenna with pattern diversity and band rejection characteristics. Microwave Opt. Technol. Lett. 59(6), 1460–1464 (2017). [DOI: 10.1002/mop.30564]

Word Cloud

Created with Highcharts 10.0.0MIMOantennaflexibleportsflatbending035 GHzisolationconfigurationssingleunitmaterial13 mmfour63λo × 0testedachieved11 GHzpatternsbandlowerUWBnetworksquad-portgoodfeaturespresentedinvestigatedworkcomposedcrescent-shapedmonopoleconnectedcurvedcoplanarwaveguideCPWfedenhanceoperatingbandwidththinRoger3003thickness = 0εr = 3tanδ = 0001usedimproveturnimprovesperformancesystemrepeatedtimesplacedorthogonal54 mm × 54 mm × 00015λo@totalsizequadantennaslayoutssimulatedoutcomesS < - 10 dBmutualcoupling ≤ -17 dBradiation5 dBpeakgainsemi-omnidirectionalbidirectionaltwoplanesDiversityGainDGvalues ≥ 99 dBdesignedworkingEnvelopCorrelationCoefficientECC034 GHz014ChannelCapacityLossCCLvalue ≤ 05bit/s/Hzworkedcalculatedextractedsuitablevaluessupportsuggestedsystematicinvestigationdepending

Similar Articles

Cited By (8)