The Jasmine (Jasminum sambac) Genome Provides Insight into the Biosynthesis of Flower Fragrances and Jasmonates.

Gang Chen, Salma Mostafa, Zhaogeng Lu, Ran Du, Jiawen Cui, Yun Wang, Qinggang Liao, Jinkai Lu, Xinyu Mao, Bang Chang, Quan Gan, Li Wang, Zhichao Jia, Xiulian Yang, Yingfang Zhu, Jianbin Yan, Biao Jin
Author Information
  1. Gang Chen: College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China.
  2. Salma Mostafa: College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; Department of Floriculture, Faculty of Agriculture, Alexandria University, Alexandria 21526, Egypt.
  3. Zhaogeng Lu: College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
  4. Ran Du: Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
  5. Jiawen Cui: College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
  6. Yun Wang: College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
  7. Qinggang Liao: Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
  8. Jinkai Lu: College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
  9. Xinyu Mao: College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
  10. Bang Chang: College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
  11. Quan Gan: College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
  12. Li Wang: College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
  13. Zhichao Jia: College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
  14. Xiulian Yang: College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
  15. Yingfang Zhu: Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China.
  16. Jianbin Yan: Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China. Electronic address: jianbinlab@caas.cn.
  17. Biao Jin: College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China. Electronic address: bjin@yzu.edu.cn.

Abstract

Jasminum sambac (jasmine flower), a world-renowned plant appreciated for its exceptional flower fragrance, is of cultural and economic importance. However, the genetic basis of its fragrance is largely unknown. Here, we present the first de novogenome assembly of J. sambac with 550.12 Mb (scaffold N50 = 40.10 Mb) assembled into 13 pseudochromosomes. Terpene synthase (TPS) genes associated with flower fragrance are considerably amplified in the form of gene clusters through tandem duplications in the genome. Gene clusters within the salicylic acid/benzoic acid/theobromine (SABATH) and benzylalcohol O-acetyltransferase/anthocyanin O-hydroxycinnamoyltransferases/anthranilate N-hydroxycinnamoyl/benzoyltransferase/deacetylvindoline 4-O-acetyltransferase (BAHD) superfamilies were identified to be related to the biosynthesis of phenylpropanoid/benzenoid compounds. Several key genes involved in jasmonate biosynthesis were duplicated, causing an increase in copy numbers. In addition, multi-omics analyses identified various aromatic compounds and many genes involved in fragrance biosynthesis pathways. Furthermore, the roles of JsTPS3 in β-ocimene biosynthesis, as well as JsAOC1 and JsAOS in jasmonic acid biosynthesis, were functionally validated. The genome assembled in this study for J. sambac offers a basic genetic resource for studying floral scent and jasmonate biosynthesis, and provides a foundation for functional genomic research and variety improvements in Jasminum.

Keywords

References

  1. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  2. Gigascience. 2016 Jun 27;5:29 [PMID: 27346392]
  3. Hortic Res. 2018 Nov 20;5:72 [PMID: 30479779]
  4. Nat Prod Commun. 2012 May;7(5):645-50 [PMID: 22799098]
  5. Plant J. 2017 Jan;89(2):181-194 [PMID: 27775193]
  6. Plant Sci. 2017 Mar;256:25-38 [PMID: 28167035]
  7. BMC Bioinformatics. 2004 May 14;5:59 [PMID: 15144565]
  8. Curr Opin Plant Biol. 2006 Jun;9(3):331-40 [PMID: 16616872]
  9. Nature. 2007 Sep 27;449(7161):463-7 [PMID: 17721507]
  10. Comput Appl Biosci. 1992 Oct;8(5):481-7 [PMID: 1422882]
  11. Nucleic Acids Res. 2018 Nov 30;46(21):e126 [PMID: 30107434]
  12. Mol Plant. 2019 Jul 1;12(7):935-950 [PMID: 30999079]
  13. Curr Protoc Bioinformatics. 2004 May;Chapter 4:Unit 4.10 [PMID: 18428725]
  14. J Chromatogr B Analyt Technol Biomed Life Sci. 2008 Aug 15;871(2):261-70 [PMID: 18467195]
  15. Food Chem. 2021 Jun 15;347:129005 [PMID: 33482487]
  16. Plant Cell Environ. 2014 Aug;37(8):1936-49 [PMID: 24588567]
  17. New Phytol. 2013 Apr;198(1):16-32 [PMID: 23383981]
  18. Annu Rev Plant Biol. 2005;56:301-25 [PMID: 15862098]
  19. Nucleic Acids Res. 2012 Apr;40(7):e49 [PMID: 22217600]
  20. Front Plant Sci. 2022 Mar 10;13:860157 [PMID: 35360336]
  21. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  22. Mol Plant. 2013 Nov;6(6):1769-80 [PMID: 23702596]
  23. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  24. Genomics. 2006 Dec;88(6):745-751 [PMID: 16857340]
  25. Bioinformatics. 2010 Mar 1;26(5):589-95 [PMID: 20080505]
  26. N Biotechnol. 2019 Jan 25;48:1-11 [PMID: 29017819]
  27. Nature. 2017 Jan 12;541(7636):212-216 [PMID: 28024298]
  28. Bioinformatics. 2005 Jun;21 Suppl 1:i152-8 [PMID: 15961452]
  29. Molecules. 2017 Mar 29;22(4): [PMID: 28353656]
  30. Bioinformatics. 2013 Oct 1;29(19):2487-9 [PMID: 23842809]
  31. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  32. Cytogenet Genome Res. 2005;110(1-4):462-7 [PMID: 16093699]
  33. Plant Methods. 2014 Jun 27;10:21 [PMID: 25053969]
  34. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  35. Nucleic Acids Res. 1997 Mar 1;25(5):955-64 [PMID: 9023104]
  36. Bioinformatics. 2005 Jun;21 Suppl 1:i351-8 [PMID: 15961478]
  37. Genome Res. 2004 May;14(5):988-95 [PMID: 15123596]
  38. Nat Biotechnol. 2019 Aug;37(8):907-915 [PMID: 31375807]
  39. Ecol Lett. 2010 May;13(5):643-56 [PMID: 20337694]
  40. Environ Toxicol. 2021 Apr;36(4):607-619 [PMID: 33270331]
  41. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  42. Nature. 2017 Jun 1;546(7656):148-152 [PMID: 28538728]
  43. Genomics Proteomics Bioinformatics. 2021 Aug;19(4):584-589 [PMID: 34175476]
  44. Hortic Res. 2020 Aug 1;7:130 [PMID: 32821413]
  45. Mol Biol Evol. 2021 Sep 27;38(10):4647-4654 [PMID: 34320186]
  46. Food Chem. 2019 Jul 15;286:170-178 [PMID: 30827592]
  47. Int J Mol Sci. 2021 Aug 09;22(16): [PMID: 34445272]
  48. BMC Bioinformatics. 2018 Nov 29;19(1):460 [PMID: 30497373]
  49. Syst Biol. 2012 Mar;61(2):346-59 [PMID: 22105867]
  50. Genome Res. 2000 Apr;10(4):511-5 [PMID: 10779490]
  51. J Agric Food Chem. 2002 Aug 14;50(17):4878-84 [PMID: 12166975]
  52. Bioinformatics. 2007 May 1;23(9):1061-7 [PMID: 17332020]
  53. Nat Ecol Evol. 2021 Apr;5(4):449-457 [PMID: 33510432]
  54. Mol Biol Evol. 2017 Jul 1;34(7):1812-1819 [PMID: 28387841]
  55. BMC Plant Biol. 2020 Feb 22;20(1):86 [PMID: 32087683]
  56. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  57. Plant Biotechnol J. 2021 Dec;19(12):2544-2560 [PMID: 34375461]
  58. Plant J. 2007 Jan;49(2):194-207 [PMID: 17163881]
  59. J Exp Bot. 2017 Mar 1;68(6):1303-1321 [PMID: 27940470]
  60. J Biol Chem. 2008 Jun 13;283(24):16400-7 [PMID: 18400744]
  61. BMC Bioinformatics. 2006 Feb 09;7:62 [PMID: 16469098]
  62. Nat Prod Commun. 2010 Jan;5(1):157-62 [PMID: 20184043]
  63. Genome Res. 2002 Apr;12(4):656-64 [PMID: 11932250]
  64. Mol Plant. 2017 Jul 5;10(7):975-989 [PMID: 28552780]
  65. Genomics Proteomics Bioinformatics. 2021 Aug;19(4):578-583 [PMID: 34400360]
  66. Front Plant Sci. 2019 Oct 01;10:1166 [PMID: 31632418]
  67. Ann Bot. 2017 Jul 1;120(1):1-20 [PMID: 28873948]
  68. Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9413-E9422 [PMID: 29078332]
  69. Bioinformatics. 2001 Sep;17(9):847-8 [PMID: 11590104]
  70. J Mol Biol. 1997 Apr 25;268(1):78-94 [PMID: 9149143]
  71. Mol Plant. 2010 Jan;3(1):2-20 [PMID: 20035037]
  72. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  73. Nat Methods. 2016 Dec;13(12):1050-1054 [PMID: 27749838]
  74. Bioinformatics. 2011 Mar 15;27(6):764-70 [PMID: 21217122]
  75. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W265-8 [PMID: 17485477]
  76. Genome Biol. 2008 Jan 11;9(1):R7 [PMID: 18190707]
  77. Bioinformatics. 2009 May 15;25(10):1335-7 [PMID: 19307242]
  78. Genome Biol. 2020 Aug 10;21(1):200 [PMID: 32778152]
  79. Annu Rev Plant Biol. 2018 Apr 29;69:387-415 [PMID: 29539269]
  80. Bioinformatics. 2004 Nov 1;20(16):2878-9 [PMID: 15145805]

MeSH Term

Jasminum
Odorants
Cyclopentanes
Flowers

Chemicals

jasmonic acid
Cyclopentanes

Word Cloud

Created with Highcharts 10.0.0biosynthesissambacfragranceJasminumflowergenesgeneticJassembledclustersgenomeidentifiedcompoundsinvolvedjasmonateJasmineGenomeFlowerjasmineworld-renownedplantappreciatedexceptionalculturaleconomicimportanceHoweverbasislargelyunknownpresentfirstdenovogenomeassembly55012 MbscaffoldN50 = 4010 Mb13pseudochromosomesTerpenesynthaseTPSassociatedconsiderablyamplifiedformgenetandemduplicationsGenewithinsalicylicacid/benzoicacid/theobromineSABATHbenzylalcoholO-acetyltransferase/anthocyaninO-hydroxycinnamoyltransferases/anthranilateN-hydroxycinnamoyl/benzoyltransferase/deacetylvindoline4-O-acetyltransferaseBAHDsuperfamiliesrelatedphenylpropanoid/benzenoidSeveralkeyduplicatedcausingincreasecopynumbersadditionmulti-omicsanalysesvariousaromaticmanypathwaysFurthermorerolesJsTPS3β-ocimenewellJsAOC1JsAOSjasmonicacidfunctionallyvalidatedstudyoffersbasicresourcestudyingfloralscentprovidesfoundationfunctionalgenomicresearchvarietyimprovementsProvidesInsightBiosynthesisFragrancesJasmonatesJasmonate

Similar Articles

Cited By