Sickle-shaped high gain and low profile based four port MIMO antenna for 5G and aeronautical mobile communication.

Ammar Armghan, Sunil Lavadiya, Pamula Udayaraju, Meshari Alsharari, Khaled Aliqab, Shobhit K Patel
Author Information
  1. Ammar Armghan: Department of Electrical Engineering, College of Engineering, Jouf University, 72388, Sakaka, Saudi Arabia.
  2. Sunil Lavadiya: Department of Information Communication and Technology, Marwadi University, Rajkot, 360003, Gujarat, India.
  3. Pamula Udayaraju: Department of Computer Science and Engineering, SRKR Engineering College, Bhimavaram, 534204, Andhra Pradesh, India.
  4. Meshari Alsharari: Department of Electrical Engineering, College of Engineering, Jouf University, 72388, Sakaka, Saudi Arabia. mmaalsharari@ju.edu.sa.
  5. Khaled Aliqab: Department of Electrical Engineering, College of Engineering, Jouf University, 72388, Sakaka, Saudi Arabia. kmaliqab@ju.edu.sa.
  6. Shobhit K Patel: Department of Computer Engineering, Marwadi University, Rajkot, 360003, Gujarat, India.

Abstract

The construction of the four-port MIMO antenna in the form of a sickle is provided in the article. Initially, the single port element is designed and optimized. Next, a structure with two ports is created, and lastly, a design with four ports is completed. This process is repeated until the design is optimized. Three types of parametric analysis are considered, including variations in length, widths of sickle-shaped patches, and varying sizes of DGS. The frequency range of 2-8 GHz is used for structural investigation. The - 18.77 dB of return loss was observed at 3.825 GHz for a single-element structure. The optimized one-port structure provides a return loss of - 19.79 dB at 3.825 GHz. The port design offers a bandwidth of 0.71 GHz (3.515-4.225). The four-port design represents two bands that are observed at 3 GHz and 5.43 GHz. Both bands provide the return loss at respectively - 19.79 dB and - 20.53 dB with bandwidths of 1.375 GHz (2.14-3.515) and 0.25 GHz (5.335-5.585). The healthy isolation among both transmittance and reflectance response is achieved. The low-profile material was used to create the design that was presented. The article includes a comparison of the findings that were measured and those that were simulated. The four-port design that has been shown offers a total gain of 15.93 dB, a peak co-polar value of 5.46 dB, a minimum return loss of - 20.53 dB, a peak field distribution of 46.43 A/m and a maximum bandwidth of 1.375 GHz. The values for all diversity parameters like ECC are near zero, the Negative value of TARC, Near to zero MEG, DG is almost 10 dB, and a zero value of CCL is achieved. All diversity parameter performance is within the allowable range. The design is well suited for 5G and aeronautical mobile communication applications.

References

  1. Shoaib, N. et al. MIMO antennas for smart 5g devices. IEEE Access 6, 77014–77021 (2018).
  2. Pi, Z. & Khan, F. An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 49, 101–107 (2011).
  3. Zhang, J., Ge, X., Li, Q., Guizani, M. & Zhang, Y. 5G millimeter-wave antenna array: Design and challenges. IEEE Wirel. Commun. 24, 106–112 (2017).
  4. Rahman, M., NagshvarianJahromi, M., Mirjavadi, S. & Hamouda, A. Compact UWB band-notched antenna with integrated bluetooth for personal wireless communication and UWB applications. Electronics 8, 158 (2019).
  5. Ojaroudi Parchin, N. et al. Mobile-phone antenna array with diamond-ring slot elements for 5G massive MIMO systems. Electronics 8, 521 (2019).
  6. Yashchyshyn, Y. et al. 28 GHz switched-beam antenna based on S-PIN diodes for 5G mobile communications. IEEE Antennas Wirel. Propag. Lett. 17, 225–228 (2018).
  7. Bang, J. & Choi, J. A SAR reduced mm-wave beam-steerable array antenna with dual-mode operation for fully metal-covered 5G cellular handsets. IEEE Antennas Wirel. Propag. Lett. 17, 1118–1122 (2018).
  8. Iqbal, A. et al. Electromagnetic bandgap backed millimeter-wave MIMO antenna for wearable applications. IEEE Access 7, 111135–111144 (2019).
  9. Zhang, Y., Deng, J.-Y., Li, M.-J., Sun, D. & Guo, L.-X. A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications. IEEE Antennas Wirel. Propag. Lett. 18, 747–751 (2019).
  10. Sun, Y.-X. & Leung, K. W. Substrate-integrated two-port dual-frequency antenna. IEEE Trans. Antennas Propag. 64, 3692–3697 (2016).
  11. Park, J.-S. et al. A tilted combined beam antenna for 5G communications using a 28-GHz band. IEEE Antennas Wirel. Propag. Lett. 15, 1685–1688 (2016).
  12. Sharawi, M. S., Podilchak, S. K., Hussain, M. T. & Antar, Y. M. M. Dielectric resonator based MIMO antenna system enabling millimetre-wave mobile devices. IET Microwaves Antennas Propag. 11, 287–293 (2017).
  13. Jilani, S. F. & Alomainy, A. Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks. IET Microwaves Antennas Propag. 12, 672–677 (2018).
  14. Yang, B., Yu, Z., Dong, Y., Zhou, J. & Hong, W. Compact tapered slot antenna array for 5G millimeter-wave massive MIMO systems. IEEE Trans. Antennas Propag. 65, 6721–6727 (2017).
  15. Saad, A. A. R. & Mohamed, H. A. Printed millimeter-wave MIMO-based slot antenna arrays for 5G networks. AEU Int. J. Electron. Commun. 99, 59–69 (2019).
  16. Yuan, Y., Wu, Q., Burokur, S. N. & Zhang, K. Chirality-assisted phase metasurface for circular polarization preservation and independent hologram imaging in microwave region. IEEE Trans. Microw. Theory Tech. 71, 3259–3272 (2023).
  17. Li, J. et al. Hybrid dispersion engineering based on chiral metamirror. Laser Photon. Rev. 17, 859 (2023).
  18. Addepalli, T. et al. Fractal loaded, novel, and compact two- and eight-element high diversity MIMO antenna for 5G sub-6 GHz (N77/N78 and N79) and WLAN applications, verified with TCM analysis. Electronics 12, 952 (2023).
  19. Saxena, S., Kanaujia, B. K., Dwari, S., Kumar, S. & Tiwari, R. MIMO antenna with built-in circular shaped isolator for sub-6 GHz 5G applications. Electron. Lett. 54, 478–480 (2018).
  20. Addepalli, T., Babu-Kamili, J., Kumar-Bandi, K., Nella, A. & Sharma, M. Lotus flower-shaped 4/8-element MIMO antenna for 5G n77 and n78 band applications. J. Electromagn. Waves Appl. 36, 1404–1422 (2022).
  21. Addepalli, T. et al. Design and Experimental Analysis of Dual-Port Antenna with High Isolation for 5G Sub 6 GHz: n77/n78/n79 and WiFi-5 Bands Applications. IETE J. Res. 2023, 1–10. https://doi.org/10.1080/03772063.2023.2167740 (2023). [DOI: 10.1080/03772063.2023.2167740]
  22. Megahed, A. A., Abdelazim, M., Abdelhay, E. H. & Soliman, H. Y. M. Sub-6 GHz highly isolated wideband MIMO antenna arrays. IEEE Access 10, 19875–19889 (2022).
  23. Jiang, H., Si, L.-M., Hu, W. & Lv, X. A symmetrical dual-beam bowtie antenna with gain enhancement using metamaterial for 5G MIMO applications. IEEE Photon. J. 11, 1–9 (2019).
  24. Hussain, N., Jeong, M.-J., Park, J. & Kim, N. A broadband circularly polarized fabry-perot resonant antenna using a single-layered PRS for 5G MIMO applications. IEEE Access 7, 42897–42907 (2019).
  25. Sharma, D., Kanaujia, B. K., Kumar, S., Rambabu, K. & Matekovits, L. Low-loss MIMO antenna wireless communication system for 5G cardiac pacemakers. Sci. Rep. 13, 9557 (2023). [PMID: 37308491]
  26. Ren, A. et al. A broadband MIMO antenna based on multimodes for 5g smartphone applications. IEEE Antennas Wirel. Propag. Lett. 22, 1642–1646 (2023).
  27. Dwivedi, A. K. et al. Circularly polarized printed dual port MIMO antenna with polarization diversity optimized by machine learning approach for 5G NR n77/n78 frequency band applications. Sci. Rep. 13, 13994 (2023). [PMID: 37634021]
  28. Anbarasu, M. & Nithiyanantham, J. Performance analysis of highly efficient two-port MIMO antenna for 5G wearable applications. IETE J. Res. 69, 3594–3603 (2023).
  29. Ali Esmail, B. & Koziel, S. High isolation metamaterial-based dual-band MIMO antenna for 5G millimeter-wave applications. AEU Int. J. Electron. Commun. 158, 154470 (2023).
  30. Addepalli, T., Vidyavathi, T., Neelima, K., Sharma, M. & Kumar, D. Asymmetrical fed calendula flower-shaped four-port 5G-NR band (n77, n78, and n79) MIMO antenna with high diversity performance. Int. J. Microw. Wirel. Technol. 15, 683–697 (2023).
  31. Tran, H. H. & Nguyen-Trong, N. Performance enhancement of MIMO patch antenna using parasitic elements. IEEE Access 9, 30011–30016 (2021).
  32. Sumathi, K., Lavadiya, S., Yin, P. Z., Parmar, J. & Patel, S. K. High gain multiband and frequency reconfigurable metamaterial superstrate microstrip patch antenna for C/X/Ku-band wireless network applications. Wirel. Netw. 27, 2131–2146 (2021).
  33. Lavadiya, S. P. et al. Design and verification of novel low-profile miniaturized pattern and frequency tunable microstrip patch antenna using two PIN diodes. Braz. J. Phys. 51, 1303–1313 (2021).
  34. Wu, A., Tao, Y., Zhang, P., Zhang, Z. & Fang, Z. A compact high-isolation four-element MIMO antenna with asymptote-shaped structure. Sensors 23, 2484 (2023). [PMID: 36904687]
  35. Lavadiya, S. P. et al. Low profile multiband microstrip patch antenna with frequency reconfigurable feature using PIN diode for S, C, X, and Ku band applications. Int. J. Commun. Syst. 35, 9 (2022).
  36. Balanis, C. A. Antenna Theory: Analysis and Design (Springer, 2016).
  37. Reniers, A. C. F., Liu, Q., Herben, M. H. A. J. & Smolders, A. B. Review of the accuracy and precision of mm-wave antenna simulations and measurements. In 2016 10th European Conference on Antennas and Propagation (EuCAP) 1–5 (IEEE, 2016). https://doi.org/10.1109/EuCAP.2016.7481973 .
  38. Alsharari, M. et al. A novel design of complementary split ring resonator metamaterial-based low-profile MIMO antenna with defected ground structure for S/C/X/Ka band applications. Micromachines 14, 1232 (2023). [PMID: 37374816]
  39. Volakis, J. L., Okios, A. A. & Jackson, D. R. Antenna Engineering Handbook Fourth Edition, Chapter 11, Leaky Wave Antennas (McGraw-Hill Education, 2007).
  40. Muthukrishnan, K., Kamruzzaman, M. M., Lavadiya, S. & Sorathiya, V. Superlative split ring resonator shaped ultrawideband and high gain 1×2 MIMO antenna for Terahertz communication. Nano Commun. Netw. 36, 100437 (2023).
  41. Sun, L., Li, Y., Zhang, Z. & Feng, Z. Wideband 5G MIMO antenna with integrated orthogonal-mode dual-antenna pairs for metal-rimmed smartphones. IEEE Trans. Antennas Propag. 68, 2494–2503 (2020).
  42. Nguyen, N. L. & Vu, V. Y. Gain enhancement for MIMO antenna using metamaterial structure. Int. J. Microw. Wirel. Technol. 11, 851–862 (2019).
  43. Lan, N. N. Gain enhancement in MIMO antennas using defected ground structure. Prog. Electromagn. Res. M 87, 127–136 (2019).
  44. Molina-Garcia-Pardo, J.-M., Rodriguez, J. V. & Juan-Llacer, L. Polarized indoor MIMO channel measurements at 2.45 GHz. IEEE Trans. Antennas Propag. 56, 3818–3828 (2008).
  45. Lavadiya, S., Sorathiya, V. & Patel, S. 1x2 printed element based MIMO antenna with UWB and multiband response for airborne and naval radar communication. In Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XVI (eds. Sadwick, L. P. & Yang, T.) 45 (SPIE, 2023). https://doi.org/10.1117/12.2653309 .
  46. Stutzman, W. L. & Thiele, G. A. Antenna theory and design. IEEE Antennas Propag. Soc. Newsl. 23, 40–41 (1981).
  47. Sorathiya, V., Alharbi, A. G. & Lavadiya, S. Design and investigation of unique shaped low-Profile material-based superlative two-element printed ultrawideband MIMO antenna for Zigbee/WiFi/5G/WiMAX applications. Alexandr. Eng. J. 64, 813–831 (2023).
  48. Li, M., Zhong, B. G. & Cheung, S. W. Isolation enhancement for MIMO patch antennas using near-field resonators as coupling-mode transducers. IEEE Trans. Antennas Propag. 67, 755–764 (2019).
  49. Ott, H. W. Electromagnetic Compatibility Engineering. Electromagnetic Compatibility Engineering (Wiley, 2009). https://doi.org/10.1002/9780470508510 . [DOI: 10.1002/9780470508510]
  50. Mei, X. & Wu, K.-L. Envelope correlation coefficient for multiple MIMO antennas of mobile terminals. In 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting 1597–1598 (IEEE, 2020). https://doi.org/10.1109/IEEECONF35879.2020.9329678 .
  51. Sarkar, D. & Srivastava, K. V. Compact four-element SRR-loaded dual-band MIMO antenna for WLAN/WiMAX/WiFi/4G-LTE and 5G applications. Electron. Lett. 53, 1623–1624 (2017).
  52. Zhang, S., Ying, Z., Xiong, J. & He, S. Ultrawideband MIMO/Diversity antennas with a tree-like structure to enhance wideband isolation. IEEE Antennas Wirel. Propag. Lett. 8, 1279–1282 (2009).
  53. Liu, L., Cheung, S. W. & Yuk, T. I. Compact MIMO antenna for portable devices in UWB applications. IEEE Trans. Antennas Propag. 61, 4257–4264 (2013).
  54. Du, C., Zhao, Z., Wang, X. & Yang, F.-H. a compact cpw-fed triple-band mimo antenna with neutralization line decoupling for wlan/wimax/5g applications. Prog. Electromagn. Res. M 103, 129–140 (2021).
  55. Moradikordalivand, A., Leow, C. Y., Rahman, T. A., Ebrahimi, S. & Chua, T. H. Wideband MIMO antenna system with dual polarization for WiFi and LTE applications. Int. J. Microw. Wirel. Technol. 8, 643–650 (2016).
  56. Alharbi, A. G., Kulkarni, J., Desai, A., Sim, C.-Y.-D. & Poddar, A. A multi-slot two-antenna MIMO with high isolation for Sub-6 GHz 5G/IEEE802.11ac/ax/C-Band/X-Band wireless and satellite applications. Electronics 11, 473 (2022).
  57. Anitha, R., Vinesh, P. V., Prakash, K. C., Mohanan, P. & Vasudevan, K. A Compact quad element slotted ground wideband antenna for MIMO applications. IEEE Trans. Antennas Propag. 64, 4550–4553 (2016).
  58. Sarkar, D. & Srivastava, K. V. A compact four-element MIMO/diversity antenna with enhanced bandwidth. IEEE Antennas Wirel. Propag. Lett. 16, 2469–2472 (2017).
  59. MoradiKordalivand, A., Rahman, T. A. & Khalily, M. Common elements wideband MIMO antenna system for WiFi/LTE access-point applications. IEEE Antennas Wirel. Propag. Lett. 13, 1601–1604 (2014).
  60. Hussain, S. A. et al. Wideband, high-gain, and compact four-port MIMO antenna for future 5G devices operating over ka-band spectrum. Appl. Sci. 13, 4380 (2023).
  61. Taher, F. et al. Design and analysis of circular polarized two-port MIMO antennas with various antenna element orientations. Micromachines 14, 380 (2023). [PMID: 36838080]
  62. Jabire, A. H., Sani, S., Saminu, S., Adamu, M. J. & Hussein, M. I. A crossed-polarized four port MIMO antenna for UWB communication. Heliyon 9, e12710 (2023). [PMID: 36685360]
  63. Desai, A. et al. Interconnected CPW fed flexible 4-Port MIMO antenna for UWB, X, and Ku band applications. IEEE Access 10, 57641–57654 (2022).
  64. Faouri, Y. et al. Compact super wideband frequency diversity hexagonal shaped monopole antenna with switchable rejection band. IEEE Access 10, 42321–42333 (2022).
  65. Hadda, L., Sharma, M., Gupta, N., Kumar, S. & Singh, A. K. On-demand reconfigurable WiMAX/WLAN UWB-X band high isolation 2×2 MIMO antenna for imaging applications. IETE J. Res. 2021, 1–13. https://doi.org/10.1080/03772063.2021.1986153 (2021). [DOI: 10.1080/03772063.2021.1986153]

Word Cloud

Created with Highcharts 10.0.0designreturnlossfour-portportoptimizedstructure35valuezeroMIMOantennaarticletwoportsfourrangeusedobserved825 GHz- 1979 dBoffersbandwidth0bands- 2053 dB1375 GHzachievedgainpeakdiversity5GaeronauticalmobilecommunicationconstructionformsickleprovidedInitiallysingleelementdesignedNextcreatedlastlycompletedprocessrepeatedThreetypesparametricanalysisconsideredincludingvariationslengthwidthssickle-shapedpatchesvaryingsizesDGSfrequency2-8 GHzstructuralinvestigation- 1877 dBsingle-elementone-portprovides71 GHz515-4225represents3 GHz43 GHzproviderespectivelybandwidths214-351525 GHz335-5585healthyisolationamongtransmittancereflectanceresponselow-profilematerialcreatepresentedincludescomparisonfindingsmeasuredsimulatedshowntotal1593 dBco-polar46 dBminimumfielddistribution4643 A/mmaximumvaluesparameterslikeECCnearNegativeTARCNearMEGDGalmost10 dBCCLparameterperformancewithinallowablewellsuitedapplicationsSickle-shapedhighlowprofilebased

Similar Articles

Cited By (3)