A Machine Learning Model Based on CT Imaging Metrics and Clinical Features to Predict the Risk of Hospital-Acquired Pneumonia After Traumatic Brain Injury.

Shaojie Li, Qiangqiang Feng, Jiayin Wang, Baofang Wu, Weizhi Qiu, Yiming Zhuang, Yong Wang, Hongzhi Gao
Author Information
  1. Shaojie Li: Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China.
  2. Qiangqiang Feng: Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China.
  3. Jiayin Wang: Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China.
  4. Baofang Wu: Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China.
  5. Weizhi Qiu: Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China.
  6. Yiming Zhuang: Internal Medicine, Quanzhou Quangang District Hillside Street Community Health Service Center, Quanzhou, Fujian, 362000, People's Republic of China.
  7. Yong Wang: Child and Adolescent Psychiatry, The Third Hospital of Quanzhou, Quanzhou, Fujian, 362000, People's Republic of China.
  8. Hongzhi Gao: Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China.

Abstract

Objective: To develop a validated machine learning (ML) algorithm for predicting the risk of hospital-acquired pneumonia (HAP) in patients with traumatic brain injury (TBI).
Materials and Methods: We employed the Least Absolute Shrinkage and Selection Operator (LASSO) to identify critical features related to pneumonia. Five ML models-Logistic Regression (LR), Extreme Gradient Boosting (XGB), Random Forest (RF), Naive Bayes Classifier (NB), and Support Vector Machine (SVC)-were developed and assessed using the training and validation datasets. The optimal model was selected based on its performance metrics and used to create a dynamic web-based nomogram.
Results: In a cohort of 858 TBI patients, the HAP incidence was 41.02%. LR was determined to be the optimal model with superior performance metrics including AUC, accuracy, and F1-score. Key predictive factors included Age, Glasgow Coma Score, Rotterdam Score, D-dimer, and the Systemic Immune Response to Inflammation Index (SIRI). The nomogram developed based on these predictors demonstrated high predictive accuracy, with AUCs of 0.818 and 0.819 for the training and validation datasets, respectively. Decision curve analysis (DCA) and calibration curves validated the model's clinical utility and accuracy.
Conclusion: We successfully developed and validated a high-performance ML algorithm to assess the risk of HAP in TBI patients. The dynamic nomogram provides a practical tool for real-time risk assessment, potentially improving clinical outcomes by aiding in early intervention and personalized patient management.

Keywords

References

  1. J Int Med Res. 2023 Mar;51(3):3000605231161481 [PMID: 36935582]
  2. Intensive Care Med. 2022 Jun;48(6):649-666 [PMID: 35595999]
  3. Clin Interv Aging. 2023 Sep 11;18:1477-1490 [PMID: 37720840]
  4. Semin Thromb Hemost. 2020 Mar;46(2):176-182 [PMID: 32069515]
  5. PLoS One. 2008 May 14;3(5):e2158 [PMID: 18478129]
  6. Cell Mol Neurobiol. 2017 May;37(4):571-585 [PMID: 27383839]
  7. Brain Inj. 2007 Dec;21(13-14):1411-7 [PMID: 18066943]
  8. Cureus. 2023 Jul 17;15(7):e41995 [PMID: 37593265]
  9. Crit Rev Microbiol. 2022 May;48(3):257-269 [PMID: 34348558]
  10. Gerontology. 2023;69(2):181-188 [PMID: 35584610]
  11. J Neuroinflammation. 2019 Nov 11;16(1):210 [PMID: 31711546]
  12. Neurocrit Care. 2020 Feb;32(1):272-285 [PMID: 31300956]
  13. Curr Opin Crit Care. 2018 Oct;24(5):347-352 [PMID: 30063491]
  14. Clin Infect Dis. 2016 Sep 1;63(5):e61-e111 [PMID: 27418577]
  15. Neurotherapeutics. 2016 Oct;13(4):783-790 [PMID: 27485236]
  16. Res Pract Thromb Haemost. 2022 Jun 08;6(4):e12734 [PMID: 35702585]
  17. Clin Infect Dis. 2018 Aug 1;67(4):513-518 [PMID: 29438467]
  18. Semin Thromb Hemost. 2020 Mar;46(2):116-124 [PMID: 31877570]
  19. Neurochirurgie. 2021 May;67(3):218-221 [PMID: 32387427]
  20. Front Immunol. 2023 Feb 13;14:1115031 [PMID: 36860868]
  21. Intensive Care Med. 2011 Jul;37(7):1182-91 [PMID: 21544692]
  22. Front Mol Neurosci. 2023 Oct 27;16:1276726 [PMID: 37965038]
  23. Bone Joint Res. 2020 Oct;9(10):701-708 [PMID: 33399473]
  24. BMC Geriatr. 2023 Oct 7;23(1):633 [PMID: 37805464]
  25. J Clin Med. 2020 May 18;9(5): [PMID: 32443573]
  26. Crit Care. 2017 Sep 6;21(1):233 [PMID: 28874206]
  27. Front Neurol. 2020 Feb 20;11:112 [PMID: 32153493]
  28. Int J Surg. 2024 Jul 01;110(7):4014-4022 [PMID: 38498385]
  29. Exp Neurol. 2020 Jan;323:113080 [PMID: 31626746]
  30. J Neuroinflammation. 2020 Jun 17;17(1):193 [PMID: 32552898]
  31. BMC Neurol. 2023 Aug 3;23(1):290 [PMID: 37537542]
  32. Antioxid Redox Signal. 2015 Dec 10;23(17):1316-28 [PMID: 25751601]
  33. Gut Microbes. 2020;11(2):135-157 [PMID: 31368397]
  34. J Crit Care. 2019 Apr;50:221-226 [PMID: 30583121]
  35. Lancet. 2015 Apr 18;385(9977):1486-7 [PMID: 25612859]
  36. Postgrad Med. 2023 Sep;135(7):681-689 [PMID: 37756038]
  37. Infect Control Hosp Epidemiol. 2022 Jun;43(6):687-713 [PMID: 35589091]

Word Cloud

Created with Highcharts 10.0.0nomogramvalidatedMLriskpneumoniaHAPpatientsTBIdevelopedmetricsdynamicaccuracymachinelearningalgorithmhospital-acquiredtraumaticbraininjuryLRMachinetrainingvalidationdatasetsoptimalmodelbasedperformancepredictiveScore0clinicalObjective:developpredictingMaterialsMethods:employedLeastAbsoluteShrinkageSelectionOperatorLASSOidentifycriticalfeaturesrelatedFivemodels-LogisticRegressionExtremeGradientBoostingXGBRandomForestRFNaiveBayesClassifierNBSupportVectorSVC-wereassessedusingselectedusedcreateweb-basedResults:cohort858incidence4102%determinedsuperiorincludingAUCF1-scoreKeyfactorsincludedAgeGlasgowComaRotterdamD-dimerSystemicImmuneResponseInflammationIndexSIRIpredictorsdemonstratedhighAUCs818819respectivelyDecisioncurveanalysisDCAcalibrationcurvesmodel'sutilityConclusion:successfullyhigh-performanceassessprovidespracticaltoolreal-timeassessmentpotentiallyimprovingoutcomesaidingearlyinterventionpersonalizedpatientmanagementLearningModelBasedCTImagingMetricsClinicalFeaturesPredictRiskHospital-AcquiredPneumoniaTraumaticBrainInjuryimaging

Similar Articles

Cited By (4)