Magnetic resonance imaging-based radiomics model for preoperative assessment of risk stratification in endometrial cancer.

Zhi-Yao Wei, Zhe Zhang, Dong-Li Zhao, Wen-Ming Zhao, Yuan-Guang Meng
Author Information
  1. Zhi-Yao Wei: Department of Obstetrics and Gynecology, Seventh Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100700, China.
  2. Zhe Zhang: Department of Obstetrics and Gynecology, Seventh Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100700, China.
  3. Dong-Li Zhao: Department of Obstetrics and Gynecology, Seventh Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100700, China.
  4. Wen-Ming Zhao: National Genomics Data Center and Chinese Academy of Sciences Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100700, China.
  5. Yuan-Guang Meng: Department of Obstetrics and Gynecology, Seventh Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100700, China. meng6512@vip.sina.com.

Abstract

BACKGROUND: Preoperative risk stratification is significant for the management of endometrial cancer (EC) patients. Radiomics based on magnetic resonance imaging (MRI) in combination with clinical features may be useful to predict the risk grade of EC.
AIM: To construct machine learning models to predict preoperative risk stratification of patients with EC based on radiomics features extracted from MRI.
METHODS: The study comprised 112 EC patients. The participants were randomly separated into training and validation groups with a 7:3 ratio. Logistic regression analysis was applied to uncover independent clinical predictors. These predictors were then used to create a clinical nomogram. Extracted radiomics features from the T2-weighted imaging and diffusion weighted imaging sequences of MRI images, the Mann-Whitney test, Pearson test, and least absolute shrinkage and selection operator analysis were employed to evaluate the relevant radiomic features, which were subsequently utilized to generate a radiomic signature. Seven machine learning strategies were used to construct radiomic models that relied on the screening features. The logistic regression method was used to construct a composite nomogram that incorporated both the radiomic signature and clinical independent risk indicators.
RESULTS: Having an accuracy of 0.82 along with an area under the curve (AUC) of 0.915 [95% confidence interval (CI): 0.806-0.986], the random forest method trained on radiomics characteristics performed better than expected. The predictive accuracy of radiomics prediction models surpassed that of both the clinical nomogram (AUC: 0.75, 95%CI: 0.611-0.899) and the combined nomogram (AUC: 0.869, 95%CI: 0.702-0.986) that integrated clinical parameters and radiomic signature.
CONCLUSION: The MRI-based radiomics model may be an effective tool for preoperative risk grade prediction in EC patients.

Keywords

References

  1. Radiology. 2017 Sep;284(3):748-757 [PMID: 28493790]
  2. Eur Radiol. 2013 Feb;23(2):435-49 [PMID: 22865275]
  3. Sci Rep. 2022 Nov 17;12(1):19783 [PMID: 36396713]
  4. Eur Radiol. 2012 Jul;22(7):1601-11 [PMID: 22453859]
  5. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  6. Theranostics. 2019 Feb 12;9(5):1303-1322 [PMID: 30867832]
  7. J Obstet Gynaecol. 2021 Apr;41(3):414-420 [PMID: 32347768]
  8. Am J Obstet Gynecol. 2013 Aug;209(2):142.e1-6 [PMID: 23583212]
  9. Cancers (Basel). 2022 Nov 29;14(23): [PMID: 36497362]
  10. Acad Radiol. 2020 Jul;27(7):960-968 [PMID: 31636004]
  11. Int J Gynecol Cancer. 2009 Jan;19(1):141-6 [PMID: 19258956]
  12. Cancer Causes Control. 2017 Jun;28(6):579-588 [PMID: 28361447]
  13. Br J Radiol. 2021 Sep 1;94(1125):20201314 [PMID: 34233456]
  14. CA Cancer J Clin. 2019 Mar;69(2):127-157 [PMID: 30720861]
  15. Stat Med. 2007 Dec 30;26(30):5512-28 [PMID: 18058845]
  16. Radiology. 2016 Dec;281(3):947-957 [PMID: 27347764]
  17. J Magn Reson Imaging. 2019 Mar;49(3):825-833 [PMID: 30260592]
  18. Eur Radiol. 2009 Jul;19(7):1565-74 [PMID: 19194709]
  19. Acad Radiol. 2021 May;28(5):687-693 [PMID: 32418785]
  20. N Engl J Med. 1983 Oct 13;309(15):883-7 [PMID: 6310399]
  21. Cancer Res. 2017 Nov 1;77(21):e104-e107 [PMID: 29092951]
  22. Sci Rep. 2021 Jun 8;11(1):12009 [PMID: 34103619]
  23. Ultrasound Obstet Gynecol. 2022 Aug;60(2):256-268 [PMID: 34714568]
  24. Eur Radiol. 2022 Mar;32(3):1570-1578 [PMID: 34837512]
  25. J Clin Oncol. 2019 Jul 20;37(21):1778-1784 [PMID: 31163010]
  26. Front Oncol. 2019 Oct 09;9:1007 [PMID: 31649877]
  27. Technol Cancer Res Treat. 2017 Aug;16(4):435-439 [PMID: 27562869]
  28. Br J Radiol. 2021 Sep 1;94(1125):20201347 [PMID: 34233457]
  29. Epidemiology. 2010 Jan;21(1):128-38 [PMID: 20010215]
  30. Biometrics. 1988 Sep;44(3):837-45 [PMID: 3203132]
  31. J Gynecol Oncol. 2017 Nov;28(6):e78 [PMID: 29027396]
  32. J Magn Reson Imaging. 2020 Dec;52(6):1872-1882 [PMID: 32681608]
  33. BMC Med Res Methodol. 2016 Nov 14;16(1):154 [PMID: 27842498]
  34. Obstet Gynecol. 2014 Aug;124(2 Pt 1):307-315 [PMID: 25004343]
  35. Korean J Radiol. 2020 Apr;21(4):387-401 [PMID: 32193887]
  36. Nat Rev Clin Oncol. 2017 Dec;14(12):749-762 [PMID: 28975929]

Word Cloud

Created with Highcharts 10.0.00riskclinicalradiomicsECfeaturesradiomicstratificationpatientsnomogramcancerimagingMRIconstructlearningmodelspreoperativeusedsignatureendometrialRadiomicsbasedresonancemaypredictgrademachineregressionanalysisindependentpredictorstestmethodaccuracypredictionAUC:95%CI:modelBACKGROUND:PreoperativesignificantmanagementmagneticcombinationusefulAIM:extractedMETHODS:studycomprised112participantsrandomlyseparatedtrainingvalidationgroups7:3ratioLogisticapplieduncovercreateExtractedT2-weighteddiffusionweightedsequencesimagesMann-WhitneyPearsonleastabsoluteshrinkageselectionoperatoremployedevaluaterelevantsubsequentlyutilizedgenerateSevenstrategiesreliedscreeninglogisticcompositeincorporatedindicatorsRESULTS:82alongareacurveAUC915[95%confidenceintervalCI:806-0986]randomforesttrainedcharacteristicsperformedbetterexpectedpredictivesurpassed75611-0899combined869702-0986integratedparametersCONCLUSION:MRI-basedeffectivetoolMagneticimaging-basedassessmentEndometrialMachineNomogramRisk

Similar Articles

Cited By

No available data.