Enhancing Antimicrobial Peptide Activity through Modifications of Charge, Hydrophobicity, and Structure.

Przemysław Gagat, Michał Ostrówka, Anna Duda-Madej, Paweł Mackiewicz
Author Information
  1. Przemysław Gagat: Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-137 Wroclaw, Poland. ORCID
  2. Michał Ostrówka: Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-137 Wroclaw, Poland.
  3. Anna Duda-Madej: Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland. ORCID
  4. Paweł Mackiewicz: Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-137 Wroclaw, Poland. ORCID

Abstract

Antimicrobial peptides (AMPs) are emerging as a promising alternative to traditional antibiotics due to their ability to disturb bacterial membranes and/or their intracellular processes, offering a potential solution to the growing problem of antimicrobial resistance. AMP effectiveness is governed by factors such as net charge, hydrophobicity, and the ability to form amphipathic secondary structures. When properly balanced, these characteristics enable AMPs to selectively target bacterial membranes while sparing eukaryotic cells. This review focuses on the roles of positive charge, hydrophobicity, and structure in influencing AMP activity and toxicity, and explores strategies to optimize them for enhanced therapeutic potential. We highlight the delicate balance between these properties and how various modifications, including amino acid substitutions, peptide tagging, or lipid conjugation, can either enhance or impair AMP performance. Notably, an increase in these parameters does not always yield the best results; sometimes, a slight reduction in charge, hydrophobicity, or structural stability improves the overall AMP therapeutic potential. Understanding these complex interactions is key to developing AMPs with greater antimicrobial activity and reduced toxicity, making them viable candidates in the fight against antibiotic-resistant bacteria.

Keywords

References

  1. Clin Infect Dis. 2019 Nov 13;69(11):2029-2034 [PMID: 31102400]
  2. Nucleic Acids Res. 2021 Jan 8;49(D1):D288-D297 [PMID: 33151284]
  3. Bioinformatics. 2008 Sep 15;24(18):2101-2 [PMID: 18662927]
  4. Sci Rep. 2016 Jun 08;6:27394 [PMID: 27271216]
  5. Acta Biomater. 2016 Mar;33:153-65 [PMID: 26804205]
  6. Antimicrob Agents Chemother. 2014 Sep;58(9):5363-71 [PMID: 24982074]
  7. J Biol Chem. 2004 Dec 31;279(53):55042-50 [PMID: 15475354]
  8. Eur J Biochem. 1996 Sep 1;240(2):352-7 [PMID: 8841398]
  9. Crit Rev Microbiol. 2023 Mar;49(2):231-255 [PMID: 35254957]
  10. Front Microbiol. 2020 Jan 22;10:3097 [PMID: 32038544]
  11. J Pept Sci. 2019 Dec;25(12):e3220 [PMID: 31858653]
  12. Biochemistry. 2009 Nov 24;48(46):10905-17 [PMID: 19845398]
  13. Nat Protoc. 2022 Oct;17(10):2326-2353 [PMID: 35931779]
  14. Immunogenetics. 2007 Jul;59(7):573-80 [PMID: 17483936]
  15. Hist Philos Life Sci. 2002;24(1):3-36 [PMID: 12664951]
  16. Biopolymers. 2006;84(5):435-58 [PMID: 16736494]
  17. Biochemistry. 2006 Jul 11;45(27):8341-9 [PMID: 16819833]
  18. Peptides. 2020 Oct;132:170356 [PMID: 32593681]
  19. Biochemistry. 2014 Jun 10;53(22):3637-45 [PMID: 24829070]
  20. J Mol Biol. 1999 Sep 17;292(2):195-202 [PMID: 10493868]
  21. Lancet Infect Dis. 2013 Dec;13(12):1057-98 [PMID: 24252483]
  22. Biochem J. 2016 Nov 1;473(21):4045-4062 [PMID: 27609815]
  23. Eur J Pharm Sci. 2020 Sep 1;152:105453 [PMID: 32649983]
  24. Protein Pept Lett. 2005 Jan;12(1):27-9 [PMID: 15638800]
  25. Nat Commun. 2018 Apr 16;9(1):1490 [PMID: 29662055]
  26. Sci Rep. 2022 May 7;12(1):7501 [PMID: 35525867]
  27. Eur J Med Chem. 2017 Aug 18;136:428-441 [PMID: 28525841]
  28. N Engl J Med. 2010 May 13;362(19):1804-13 [PMID: 20463340]
  29. Proteins. 1987;2(2):130-52 [PMID: 3447171]
  30. BMC Vet Res. 2020 Nov 2;16(1):419 [PMID: 33138816]
  31. Curr Pharm Des. 2010;16(28):3185-203 [PMID: 20687878]
  32. ACS Appl Mater Interfaces. 2019 Nov 27;11(47):43820-43834 [PMID: 31687796]
  33. Pharmaceutics. 2022 Dec 26;15(1): [PMID: 36678702]
  34. J Biol Chem. 2009 Jun 26;284(26):17584-94 [PMID: 19398550]
  35. J Infect Public Health. 2021 Dec;14(12):1750-1766 [PMID: 34756812]
  36. J Biol Chem. 2004 Apr 2;279(14):13896-901 [PMID: 14718539]
  37. Appl Microbiol Biotechnol. 2021 Aug;105(14-15):5845-5859 [PMID: 34319418]
  38. Drug Resist Updat. 2016 May;26:43-57 [PMID: 27180309]
  39. Antibiotics (Basel). 2022 Jul 13;11(7): [PMID: 35884190]
  40. Crit Rev Biotechnol. 2020 Nov;40(7):978-992 [PMID: 32781848]
  41. FEBS Lett. 1993 Jul 26;327(2):231-6 [PMID: 8335113]
  42. Brief Bioinform. 2022 Sep 20;23(5): [PMID: 35988923]
  43. J Biol Chem. 2005 Apr 1;280(13):12316-29 [PMID: 15677462]
  44. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):71-87 [PMID: 10590303]
  45. Adv Colloid Interface Sci. 2017 Sep;247:521-532 [PMID: 28606715]
  46. Bioinformatics. 2021 Jan 29;36(21):5262-5263 [PMID: 32683445]
  47. Viruses. 2019 Aug 01;11(8): [PMID: 31374901]
  48. Methods Mol Biol. 2017;1485:401-410 [PMID: 27730566]
  49. ChemMedChem. 2020 Dec 15;15(24):2544-2561 [PMID: 33029927]
  50. Pathogens. 2021 Oct 12;10(10): [PMID: 34684258]
  51. Biochim Biophys Acta Gen Subj. 2018 Sep;1862(9):2043-2052 [PMID: 29928920]
  52. Biochim Biophys Acta. 2009 Nov;1788(11):2411-20 [PMID: 19735644]
  53. J Med Chem. 2020 Apr 23;63(8):4081-4089 [PMID: 32216308]
  54. PLoS Comput Biol. 2013;9(9):e1003212 [PMID: 24039565]
  55. J Biol Chem. 2008 Jul 4;283(27):18636-45 [PMID: 18434320]
  56. Nat Rev Microbiol. 2015 Jan;13(1):42-51 [PMID: 25435309]
  57. Nucleic Acids Res. 2016 Jul 8;44(W1):W449-54 [PMID: 27131374]
  58. Antibiotics (Basel). 2020 Sep 21;9(9): [PMID: 32967333]
  59. Proteins. 1990;7(1):1-15 [PMID: 2184436]
  60. Antimicrob Agents Chemother. 2016 May 23;60(6):3687-99 [PMID: 27067326]
  61. Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93 [PMID: 26602694]
  62. Science. 2021 Jul 30;373(6554):471 [PMID: 34326211]
  63. Med Res Rev. 2022 Jul;42(4):1377-1422 [PMID: 34984699]
  64. N Biotechnol. 2019 Jul 25;51:39-48 [PMID: 30790718]
  65. Pharmacol Ther. 2017 Oct;178:132-140 [PMID: 28435091]
  66. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  67. Angew Chem Int Ed Engl. 2013 Jan 2;52(1):254-69 [PMID: 23161799]
  68. Biochim Biophys Acta. 1990 May 7;1031(2):143-61 [PMID: 2187536]
  69. Biochim Biophys Acta. 2007 Oct;1768(10):2355-64 [PMID: 17560539]
  70. Front Microbiol. 2010 Dec 08;1:134 [PMID: 21687759]
  71. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33774670]
  72. Biochemistry. 1998 May 19;37(20):7539-50 [PMID: 9585569]
  73. ACS Appl Mater Interfaces. 2014 Oct 8;6(19):16529-36 [PMID: 25210781]
  74. J Biol Chem. 2002 Sep 13;277(37):33913-21 [PMID: 12110678]
  75. Nanoscale. 2018 Dec 20;11(1):266-275 [PMID: 30534763]
  76. Mil Med Res. 2021 Sep 9;8(1):48 [PMID: 34496967]
  77. ChemMedChem. 2013 Nov;8(11):1865-72 [PMID: 24023000]
  78. Sci Rep. 2017 Jun 13;7(1):3384 [PMID: 28611397]
  79. Antimicrob Agents Chemother. 2011 Oct;55(10):4918-21 [PMID: 21768519]
  80. Biointerphases. 2017 Oct 26;12(5):05G605 [PMID: 29078702]
  81. Int J Antimicrob Agents. 2019 Apr;53(4):371-382 [PMID: 30472287]
  82. J Photochem Photobiol B. 2019 Nov;200:111645 [PMID: 31671371]
  83. Antimicrob Agents Chemother. 1992 Feb;36(2):313-7 [PMID: 1605597]
  84. Lancet Infect Dis. 2016 Feb;16(2):239-51 [PMID: 26795692]
  85. Front Microbiol. 2020 Jun 05;11:1057 [PMID: 32582062]
  86. Med Res Rev. 2019 May;39(3):831-859 [PMID: 30353555]
  87. J Med Chem. 2017 Mar 23;60(6):2257-2270 [PMID: 28230992]
  88. PeerJ. 2020 Dec 18;8:e10555 [PMID: 33384902]
  89. Biomaterials. 2011 Mar;32(8):2204-12 [PMID: 21168911]
  90. Bioinformatics. 2021 Aug 4;37(14):2058-2060 [PMID: 33135060]
  91. Chem Sci. 2017 Nov 1;8(11):7464-7475 [PMID: 29163899]
  92. Commun Chem. 2023 Jul 18;6(1):154 [PMID: 37464011]
  93. Eur J Biochem. 2000 Jun;267(11):3289-300 [PMID: 10824115]
  94. Nat Microbiol. 2020 Aug;5(8):1040-1050 [PMID: 32424338]
  95. Nat Rev Immunol. 2016 May;16(5):321-34 [PMID: 27087664]
  96. Nat Rev Drug Discov. 2020 May;19(5):311-332 [PMID: 32107480]
  97. Bioorg Med Chem Lett. 2013 Dec 15;23(24):6717-20 [PMID: 24211019]
  98. ACS Infect Dis. 2016 Jun 10;2(6):442-450 [PMID: 27331141]
  99. Mol Immunol. 2009 Aug;46(13):2465-73 [PMID: 19524300]
  100. Int J Antimicrob Agents. 2010 Sep;36(3):271-4 [PMID: 20630709]
  101. Lancet Infect Dis. 2019 Jan;19(1):56-66 [PMID: 30409683]
  102. J Food Biochem. 2019 Jan;43(1):e12546 [PMID: 31353490]
  103. Acta Biomater. 2017 Jul 15;57:170-186 [PMID: 28483698]
  104. Life (Basel). 2023 Sep 07;13(9): [PMID: 37763279]
  105. Protein Pept Lett. 2005 Jan;12(1):49-67 [PMID: 15638803]
  106. Res Microbiol. 2011 May;162(4):363-74 [PMID: 21320593]
  107. Front Cell Infect Microbiol. 2016 Dec 27;6:194 [PMID: 28083516]
  108. Lancet Infect Dis. 2020 Sep;20(9):e216-e230 [PMID: 32653070]
  109. Pharmacol Rev. 2003 Mar;55(1):27-55 [PMID: 12615953]
  110. Nat Microbiol. 2018 Jun;3(6):718-731 [PMID: 29795541]
  111. PLoS One. 2011 Jan 27;6(1):e16400 [PMID: 21298015]
  112. mSystems. 2024 Jul 23;9(7):e0135823 [PMID: 38934543]
  113. Biochim Biophys Acta. 2011 Apr;1808(4):1081-91 [PMID: 21192916]
  114. J Biol Chem. 2005 Oct 7;280(40):33960-7 [PMID: 16043484]
  115. Bioinformatics. 2018 Aug 15;34(16):2740-2747 [PMID: 29590297]
  116. Biomolecules. 2018 Jan 19;8(1): [PMID: 29351202]
  117. J Microbiol. 2021 Feb;59(2):113-123 [PMID: 33527313]
  118. Biochemistry. 2003 Dec 9;42(48):14130-8 [PMID: 14640680]
  119. Nat Commun. 2019 Oct 4;10(1):4538 [PMID: 31586049]
  120. Eur J Pharm Sci. 2020 Jan 1;141:105123 [PMID: 31676352]
  121. Int J Mol Sci. 2020 Jun 17;21(12): [PMID: 32560350]
  122. Small. 2021 Feb;17(7):e2003899 [PMID: 33354914]
  123. Antimicrob Agents Chemother. 2017 Mar 24;61(4): [PMID: 28167546]
  124. J Adv Res. 2024 Mar 1;: [PMID: 38431124]
  125. Nat Med. 2018 Aug;24(8):1097-1103 [PMID: 30082869]
  126. Biochem Cell Biol. 1998;76(2-3):235-46 [PMID: 9923692]
  127. Biopolymers. 2008;90(3):369-83 [PMID: 18098173]
  128. Org Biomol Chem. 2021 May 12;19(18):3983-4001 [PMID: 33978044]
  129. Biomacromolecules. 2011 Nov 14;12(11):3839-43 [PMID: 21955251]
  130. Curr Top Med Chem. 2016;16(1):76-88 [PMID: 26139115]

MeSH Term

Hydrophobic and Hydrophilic Interactions
Humans
Antimicrobial Peptides
Structure-Activity Relationship
Antimicrobial Cationic Peptides
Animals
Anti-Bacterial Agents
Bacteria

Chemicals

Antimicrobial Peptides
Antimicrobial Cationic Peptides
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0peptidesantimicrobialAMPchargehydrophobicityAMPspotentialAntimicrobialabilitybacterialmembranesresistanceactivitytoxicitytherapeuticpeptideemergingpromisingalternativetraditionalantibioticsduedisturband/orintracellularprocessesofferingsolutiongrowingproblemeffectivenessgovernedfactorsnetformamphipathicsecondarystructuresproperlybalancedcharacteristicsenableselectivelytargetsparingeukaryoticcellsreviewfocusesrolespositivestructureinfluencingexploresstrategiesoptimizeenhancedhighlightdelicatebalancepropertiesvariousmodificationsincludingaminoacidsubstitutionstagginglipidconjugationcaneitherenhanceimpairperformanceNotablyincreaseparametersalwaysyieldbestresultssometimesslightreductionstructuralstabilityimprovesoverallUnderstandingcomplexinteractionskeydevelopinggreaterreducedmakingviablecandidatesfightantibiotic-resistantbacteriaEnhancingPeptideActivityModificationsChargeHydrophobicityStructurecationicoptimizationsynthetic

Similar Articles

Cited By (5)