The association between maternal perfluoroalkylated substances exposure and neonatal birth weight: a system review and meta-analysis.

Zeyuan Fu, Xiaoyi Sun, Xupu Yang, Xiaoqian Li, Yizhe Zhang, Xiaolin Zhang, Huicai Guo, Yi Liu, Xuehui Liu
Author Information
  1. Zeyuan Fu: Department of Occupational and Environmental Health, Hebei Key Laboratory of Environment and Human Health, 580290 School of Public Health, Hebei Medical University , Shijiazhuang, Hebei, PR China.
  2. Xiaoyi Sun: Department of Occupational and Environmental Health, Hebei Key Laboratory of Environment and Human Health, 580290 School of Public Health, Hebei Medical University , Shijiazhuang, Hebei, PR China.
  3. Xupu Yang: Department of Occupational and Environmental Health, Hebei Key Laboratory of Environment and Human Health, 580290 School of Public Health, Hebei Medical University , Shijiazhuang, Hebei, PR China.
  4. Xiaoqian Li: Students' Affairs Office, 580290 Hebei Medical University , Shijiazhuang, Hebei, PR China.
  5. Yizhe Zhang: Department of Preventive Medicine, 580290 School of Public Health, Hebei Medical University , Shijiazhuang, Hebei, PR China.
  6. Xiaolin Zhang: Department of Epidemiology and Hygienic Statistics, Hebei Key Laboratory of Environment and Human Health, 580290 School of Public Health, Hebei Medical University , Shijiazhuang, Hebei, PR China.
  7. Huicai Guo: Department of Toxicology, Hebei Key Laboratory of Environment and Human Health, 580290 School of Public Health, Hebei Medical University , Shijiazhuang, Hebei, PR China.
  8. Yi Liu: Department of Toxicology, Hebei Key Laboratory of Environment and Human Health, 580290 School of Public Health, Hebei Medical University , Shijiazhuang, Hebei, PR China.
  9. Xuehui Liu: Department of Occupational and Environmental Health, Hebei Key Laboratory of Environment and Human Health, 580290 School of Public Health, Hebei Medical University , Shijiazhuang, Hebei, PR China.

Abstract

Some studies have shown that maternal exposure to perfluoroalkyl substances (PFAS) may be related to the neonatal birth weight. The purpose of this study was to explore this relationship between maternal exposure to PFAS and neonatal birth weight. All papers published before March 2024 were retrieved from the Web of Science, PubMed, and Embase databases. A thorough meta-analysis was carried out, involving data extracted from 1,673 samples obtained from a total of 24 articles. Our study found a significantly negative association between maternal PFOS exposure and neonatal birth weight (= -71.55; 95���%CI= -114.47, -28.62), with high heterogeneity ( =64.15���%, p<0.0001). Similarly, there was a significant negative correlation between maternal PFOA exposure and neonatal birth weight (= -81.26; 95���%CI= -126.08, -36.43), with high heterogeneity ( =67.23���%, p<0.0001). Subunit analysis showed that there was a significantly negative correlation between PFOS exposure and neonatal birth weight in mid-to-late pregnancy and after delivery (= -97.87; 95���%CI= -181.83, -13.92, = -138.06; 95���%CI= -255.91, -20.20), PFOA exposure showed a negative correlation with neonatal birth weight in mid-to-late pregnancy (= -85.89; 95���%CI= -139.31, -32.47), while PFNA exposure also showed a negative correlation with neonatal birth weight in mid-to-late pregnancy (= -90.39; 95���%CI= -152.90, -27.88). However, no significant correlation was observed for PFNA exposure (=3.95; 95% CI= -10.41, 18.31), with medium heterogeneity ( =40.56���%, p=0.0574), or for PFHxS exposure (=4.61; 95���%CI= -10.60, 19.81), with medium heterogeneity ( =29.27���%, p=0.1368). Further research is needed to better understand the implications of these findings on maternal and neonatal health.

Keywords

References

  1. Beaumont, RN, Kotecha, SJ, Wood, AR, Knight, BA, Sebert, S, McCarthy, MI, et al.. Common maternal and fetal genetic variants show expected polygenic effects on risk of small- or large-for-gestational-age (SGA or LGA), except in the smallest 3% of babies. PLoS Genet 2020;16:e1009191. https://doi.org/10.1371/journal.pgen.1009191 . [DOI: 10.1371/journal.pgen.1009191]
  2. Tang, J, Wu, J, Qiu, H. Research progress on risk factors related to low birth weight infants. Mod China Dr 2017;55:165���8.
  3. Sagiv, SK, Rifas-Shiman, SL, Fleisch, AF, Webster, TF, Calafat, AM, Ye, X, et al.. Early-pregnancy plasma concentrations of perfluoroalkyl substances and birth outcomes in project viva: confounded by pregnancy hemodynamics? Am J Epidemiol 2018;187:793���802. https://doi.org/10.1093/aje/kwx332 . [DOI: 10.1093/aje/kwx332]
  4. Sunderland, EM, Hu, XC, Dassuncao, C, Tokranov, AK, Wagner, CC, Allen, JG. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol 2019;29:131���47. https://doi.org/10.1038/s41370-018-0094-1 . [DOI: 10.1038/s41370-018-0094-1]
  5. Pic��, Y, Farr��, M, Llorca, M, Barcel��, D. Perfluorinated compounds in food: a global perspective. Crit Rev Food Sci Nutr 2011;51:605���25. https://doi.org/10.1080/10408391003721727 . [DOI: 10.1080/10408391003721727]
  6. Fei, C, McLaughlin, JK, Tarone, RE, Olsen, J. Perfluorinated chemicals and fetal growth: a study within the Danish National Birth Cohort. Environ Health Perspect 2007;115:1677���82. https://doi.org/10.1289/ehp.10506 . [DOI: 10.1289/ehp.10506]
  7. Kashino, I, Sasaki, S, Okada, E, Matsuura, H, Goudarzi, H, Miyashita, C, et al.. Prenatal exposure to 11 perfluoroalkyl substances and fetal growth: a large-scale, prospective birth cohort study. Environ Int 2020;136:105355. https://doi.org/10.1016/j.envint.2019.105355 . [DOI: 10.1016/j.envint.2019.105355]
  8. Rickard, BP, Rizvi, I, Fenton, SE. Per- and poly-fluoroalkyl substances (PFAS) and female reproductive outcomes: PFAS elimination, endocrine-mediated effects, and disease. Toxicology 2022;465:153031. https://doi.org/10.1016/j.tox.2021.153031 . [DOI: 10.1016/j.tox.2021.153031]
  9. Wang, Q, Ruan, Y, Lin, H, Lam, PKS. Review on perfluoroalkyl and polyfluoroalkyl substances (PFASs) in the Chinese atmospheric environment. Sci Total Environ 2020:737. [DOI: 10.1016/j.scitotenv.2020.139804]
  10. Liu, Y, Bahar, MM, Samarasinghe, S, Qi, F, Carles, S, Richmond, WR, et al.. Ecological risk assessment for perfluorohexanesulfonic acid (PFHxS) in soil using species sensitivity distribution (SSD) approach. J Hazard Mater 2022;439:129667. https://doi.org/10.1016/j.jhazmat.2022.129667 . [DOI: 10.1016/j.jhazmat.2022.129667]
  11. Scheringer, M, Trier, X, Cousins, IT, de Voogt, P, Fletcher, T, Wang, Z, et al.. Helsing��r Statement on poly- and perfluorinated alkyl substances (PFASs). Chemosphere 2014;114:337���9. https://doi.org/10.1016/j.chemosphere.2014.05.044 . [DOI: 10.1016/j.chemosphere.2014.05.044]
  12. Sunderland, EM, Hu, XC, Dassuncao, C, Tokranov, AK, Wagner, CC, Allen, JG. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol 2018;29:131���47. https://doi.org/10.1038/s41370-018-0094-1 . [DOI: 10.1038/s41370-018-0094-1]
  13. Wang, P, Lu, Y, Wang, T, Zhu, Z, Li, Q, Meng, J, et al.. Coupled production and emission of short chain perfluoroalkyl acids from a fast developing fluorochemical industry: evidence from yearly and seasonal monitoring in Daling River Basin, China. Environ Pollut 2016;218:1234���44. https://doi.org/10.1016/j.envpol.2016.08.079 . [DOI: 10.1016/j.envpol.2016.08.079]
  14. Kotthoff, M, Fliedner, A, R��del, H, G��ckener, B, B��cking, M, Biegel-Engler, A, et al.. Per- and polyfluoroalkyl substances in the German environment ��� levels and patterns in different matrices. Sci Total Environ 2020;740. https://doi.org/10.1016/j.scitotenv.2020.140116 . [DOI: 10.1016/j.scitotenv.2020.140116]
  15. Domingo, JL, Nadal, M. Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: a review of the recent scientific literature. Environ Res 2019;177. https://doi.org/10.1016/j.envres.2019.108648 . [DOI: 10.1016/j.envres.2019.108648]
  16. Ericson, I, Mart��-Cid, R, Nadal, M, Van Bavel, B, Lindstr��m, G, Domingo, JL. Human exposure to perfluorinated chemicals through the diet: intake of perfluorinated compounds in foods from the Catalan (Spain) market. J Agric Food Chem 2008;56:1787���94. https://doi.org/10.1021/jf0732408 . [DOI: 10.1021/jf0732408]
  17. Sheng, N, Pan, Y, Dai, J. Current research status of several emerging per-polyfluoroalkyl substances(PFASs). J Anhui Univ 2018;42:3���13.
  18. Liu, X-y, Qu, A, Hu, F-F, Yang, Y-R, Cao, Y-J. Oxidative damage on kidney of mice induced by PFOS-K. Prog Mod Biomed Res 2017;17:3842���5+59.
  19. Corsini, E, Luebke, RW, Germolec, DR, DeWitt, JC. Perfluorinated compounds: emerging POPs with potential immunotoxicity. Toxicol Lett 2014;230:263���70. https://doi.org/10.1016/j.toxlet.2014.01.038 . [DOI: 10.1016/j.toxlet.2014.01.038]
  20. Gaballah, S, Swank, A, Sobus, JR, Howey, XM, Schmid, J, Catron, T, et al.. Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in zebrafish exposed to GenX and other PFAS. Environ Health Perspect 2020;128:47005. https://doi.org/10.1289/ehp5843 . [DOI: 10.1289/ehp5843]
  21. Jensen, AA, Leffers, H. Emerging endocrine disrupters: perfluoroalkylated substances. Int J Androl 2008;31:161���9. https://doi.org/10.1111/j.1365-2605.2008.00870.x . [DOI: 10.1111/j.1365-2605.2008.00870.x]
  22. Case, MT, York, RG, Christian, MS. Rat and rabbit oral developmental toxicology studies with two perfluorinated compounds. Int J Toxicol 2001;20:101���9. https://doi.org/10.1177/109158180102000207 . [DOI: 10.1177/109158180102000207]
  23. Thibodeaux, JR, Hanson, RG, Rogers, JM, Grey, BE, Barbee, BD, Richards, JH, et al.. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: maternal and prenatal evaluations. Toxicol Sci : Offi J Soci Toxicol 2003;74:369���81. https://doi.org/10.1093/toxsci/kfg121 . [DOI: 10.1093/toxsci/kfg121]
  24. Butenhoff, JL, Kennedy, GL, Frame, SR, O���Connor, JC, York, RG. The reproductive toxicology of ammonium perfluorooctanoate (APFO) in the rat. Toxicology 2004;196:95���116. https://doi.org/10.1016/j.tox.2003.11.005 . [DOI: 10.1016/j.tox.2003.11.005]
  25. Kennedy, GLJr., Butenhoff, JL, Olsen, GW, O���Connor, JC, Seacat, AM, Perkins, RG, et al.. The toxicology of perfluorooctanoate. Crit Rev Toxicol 2004;34:351���84. https://doi.org/10.1080/10408440490464705 . [DOI: 10.1080/10408440490464705]
  26. Meng, Q, Inoue, K, Ritz, B, Olsen, J, Liew, Z. Prenatal exposure to perfluoroalkyl substances and birth outcomes; an updated analysis from the Danish national birth cohort. Int J Environ Res Public Health 2018;15. https://doi.org/10.3390/ijerph15091832 . [DOI: 10.3390/ijerph15091832]
  27. Washino, N, Saijo, Y, Sasaki, S, Kato, S, Ban, S, Konishi, K, et al.. Correlations between prenatal exposure to perfluorinated chemicals and reduced fetal growth. Environ Health Perspect 2009;117:660���7. https://doi.org/10.1289/ehp.11681 . [DOI: 10.1289/ehp.11681]
  28. Xu, C, Yin, S, Liu, Y, Chen, F, Zhong, Z, Li, F, et al.. Prenatal exposure to chlorinated polyfluoroalkyl ether sulfonic acids and perfluoroalkyl acids: potential role of maternal determinants and associations with birth outcomes. J Hazard Mater 2019;380:120867. https://doi.org/10.1016/j.jhazmat.2019.120867 . [DOI: 10.1016/j.jhazmat.2019.120867]
  29. Shi, Y, Yang, L, Li, J, Lai, J, Wang, Y, Zhao, Y, et al.. Occurrence of perfluoroalkyl substances in cord serum and association with growth indicators in newborns from Beijing. Chemosphere 2017;169:396���402. https://doi.org/10.1016/j.chemosphere.2016.11.050 . [DOI: 10.1016/j.chemosphere.2016.11.050]
  30. Bell, EM, Yeung, EH, Ma, W, Kannan, K, Sundaram, R, Smarr, MM, et al.. Concentrations of endocrine disrupting chemicals in newborn blood spots and infant outcomes in the upstate KIDS study. Environ Int 2018;121:232���9. https://doi.org/10.1016/j.envint.2018.09.005 . [DOI: 10.1016/j.envint.2018.09.005]
  31. Lan, L, Wei, H, Chen, D, Pang, L, Xu, Y, Tang, Q, et al.. Associations between maternal exposure to perfluoroalkylated substances (PFASs) and infant birth weight: a meta-analysis. Environ Sci Pollut Res Int 2023;30:89805���22. https://doi.org/10.1007/s11356-023-28458-0 . [DOI: 10.1007/s11356-023-28458-0]
  32. Gao, X, Ni, W, Zhu, S, Wu, Y, Cui, Y, Ma, J, et al.. Per- and polyfluoroalkyl substances exposure during pregnancy and adverse pregnancy and birth outcomes: a systematic review and meta-analysis. Environ Res 2021;201:111632. https://doi.org/10.1016/j.envres.2021.111632 . [DOI: 10.1016/j.envres.2021.111632]
  33. Johnston, JE, Valentiner, E, Maxson, P, Miranda, ML, Fry, RC. Maternal cadmium levels during pregnancy associated with lower birth weight in infants in a North Carolina cohort. PLoS One 2014;9:e109661. https://doi.org/10.1371/journal.pone.0109661 . [DOI: 10.1371/journal.pone.0109661]
  34. Luo, Y, McCullough, LE, Tzeng, JY, Darrah, T, Vengosh, A, Maguire, RL, et al.. Maternal blood cadmium, lead and arsenic levels, nutrient combinations, and offspring birthweight. BMC Publ Health 2017;17:354. https://doi.org/10.1186/s12889-017-4225-8 . [DOI: 10.1186/s12889-017-4225-8]
  35. Wright, JM, Lee, AL, Rappazzo, KM, Ru, H, Radke, EG, Bateson, TF. Systematic review and meta-analysis of birth weight and PFNA exposures. Environ Res 2023;222. https://doi.org/10.1016/j.envres.2023.115357 . [DOI: 10.1016/j.envres.2023.115357]
  36. Hamm, MP, Cherry, NM, Chan, E, Martin, JW, Burstyn, I. Maternal exposure to perfluorinated acids and fetal growth. J Expo Sci Environ Epidemiol 2010;20:589���97. https://doi.org/10.1038/jes.2009.57 . [DOI: 10.1038/jes.2009.57]
  37. Chen, MH, Ha, EH, Wen, TW, Su, YN, Lien, GW, Chen, CY, et al.. Perfluorinated compounds in umbilical cord blood and adverse birth outcomes. PLoS One 2012;7:e42474. https://doi.org/10.1371/journal.pone.0042474 . [DOI: 10.1371/journal.pone.0042474]
  38. Darrow, LA, Stein, CR, Steenland, K. Serum perfluorooctanoic acid and perfluorooctane sulfonate concentrations in relation to birth outcomes in the Mid-Ohio Valley, 2005-2010. Environ Health Perspect 2013;121:1207���13. https://doi.org/10.1289/ehp.1206372 . [DOI: 10.1289/ehp.1206372]
  39. Li, M, Zeng, XW, Qian, ZM, Vaughn, MG, Sauve, S, Paul, G, et al.. Isomers of perfluorooctanesulfonate (PFOS) in cord serum and birth outcomes in China: guangzhou Birth Cohort Study. Environ Int 2017;102:1���8. https://doi.org/10.1016/j.envint.2017.03.006 . [DOI: 10.1016/j.envint.2017.03.006]
  40. Starling, AP, Adgate, JL, Hamman, RF, Kechris, K, Calafat, AM, Ye, X, et al.. Perfluoroalkyl substances during pregnancy and offspring weight and adiposity at birth: examining mediation by maternal fasting glucose in the healthy start study. Environ Health Perspect 2017;125:067016. https://doi.org/10.1289/ehp641 . [DOI: 10.1289/ehp641]
  41. Wang, H, Du, H, Yang, J, Jiang, H, O, K, Xu, L, et al.. PFOS, PFOA, estrogen homeostasis, and birth size in Chinese infants. Chemosphere 2019;221:349���55. https://doi.org/10.1016/j.chemosphere.2019.01.061 . [DOI: 10.1016/j.chemosphere.2019.01.061]
  42. Bjerregaard-Olesen, C, Bach, CC, Long, M, Wiels��e, M, Bech, BH, Henriksen, TB, et al.. Associations of fetal growth outcomes with measures of the combined xenoestrogenic activity of maternal serum perfluorinated alkyl acids in Danish pregnant women. Environ Health Perspect 2019;127:17006. https://doi.org/10.1289/ehp1884 . [DOI: 10.1289/ehp1884]
  43. Cao, W, Liu, X, Liu, X, Zhou, Y, Zhang, X, Tian, H, et al.. Perfluoroalkyl substances in umbilical cord serum and gestational and postnatal growth in a Chinese birth cohort. Environ Int 2018;116:197���205. https://doi.org/10.1016/j.envint.2018.04.015 . [DOI: 10.1016/j.envint.2018.04.015]
  44. Manzano-Salgado, CB, Casas, M, Lopez-Espinosa, MJ, Ballester, F, I��iguez, C, Martinez, D, et al.. Prenatal exposure to perfluoroalkyl substances and birth outcomes in a Spanish birth cohort. Environ Int 2017;108:278���84. https://doi.org/10.1016/j.envint.2017.09.006 . [DOI: 10.1016/j.envint.2017.09.006]
  45. Minatoya, M, Itoh, S, Miyashita, C, Araki, A, Sasaki, S, Miura, R, et al.. Association of prenatal exposure to perfluoroalkyl substances with cord blood adipokines and birth size: the Hokkaido Study on environment and children���s health. Environ Res 2017;156:175���82. https://doi.org/10.1016/j.envres.2017.03.033 . [DOI: 10.1016/j.envres.2017.03.033]
  46. Kobayashi, S, Sata, F, Ikeda-Araki, A, Miyashita, C, Goudarzi, H, Iwasaki, Y, et al.. Relationships between maternal perfluoroalkyl substance levels, polymorphisms of receptor genes, and adverse birth outcomes in the Hokkaido birth cohort study, Japan. Reprod Toxicol 2022;107:112���22. https://doi.org/10.1016/j.reprotox.2021.12.004 . [DOI: 10.1016/j.reprotox.2021.12.004]
  47. Shen, C, Ding, J, Xu, C, Zhang, L, Liu, S, Tian, Y. Perfluoroalkyl mixture exposure in relation to fetal growth: potential roles of maternal characteristics and associations with birth outcomes. Toxics 2022;10. https://doi.org/10.3390/toxics10110650 . [DOI: 10.3390/toxics10110650]
  48. Wu, K, Xu, X, Peng, L, Liu, J, Guo, Y, Huo, X. Association between maternal exposure to perfluorooctanoic acid (PFOA) from electronic waste recycling and neonatal health outcomes. Environ Int 2012;48:1���8. https://doi.org/10.1016/j.envint.2012.06.018 . [DOI: 10.1016/j.envint.2012.06.018]
  49. Wikstr��m, S, Lin, P-I, Lindh, CH, Shu, H, Bornehag, C-G. Maternal serum levels of perfluoroalkyl substances in early pregnancy and offspring birth weight. Pediatr Res 2020;87:1093���9. https://doi.org/10.1038/s41390-019-0720-1 . [DOI: 10.1038/s41390-019-0720-1]
  50. Apelberg, BJ, Witter, FR, Herbstman, JB, Calafat, AM, Halden, RU, Needham, LL, et al.. Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ Health Perspect 2007;115:1670���6. https://doi.org/10.1289/ehp.10334 . [DOI: 10.1289/ehp.10334]
  51. Callan, AC, Rotander, A, Thompson, K, Heyworth, J, Mueller, JF, Odland, JO, et al.. Maternal exposure to perfluoroalkyl acids measured in whole blood and birth outcomes in offspring. Sci Total Environ 2016;569-570:1107���13. https://doi.org/10.1016/j.scitotenv.2016.06.177 . [DOI: 10.1016/j.scitotenv.2016.06.177]
  52. Lee, ES, Han, S, Oh, JE. Association between perfluorinated compound concentrations in cord serum and birth weight using multiple regression models. Reprod Toxicol 2016;59:53���9. https://doi.org/10.1016/j.reprotox.2015.10.020 . [DOI: 10.1016/j.reprotox.2015.10.020]
  53. Hjermitslev, MH, Long, M, Wiels��e, M, Bonefeld-J��rgensen, EC. Persistent organic pollutants in Greenlandic pregnant women and indices of foetal growth: the ACCEPT study. Sci Total Environ 2020;698:134118. https://doi.org/10.1016/j.scitotenv.2019.134118 . [DOI: 10.1016/j.scitotenv.2019.134118]
  54. Mwapasa, M, Huber, S, Chakhame, BM, Maluwa, A, Odland, ML, R��llin, H, et al.. Serum concentrations of selected poly- and perfluoroalkyl substances (PFASs) in pregnant women and associations with birth outcomes. A cross-sectional study from southern Malawi. Int J Environ Res Publ Health 2023;20. https://doi.org/10.3390/ijerph20031689 . [DOI: 10.3390/ijerph20031689]
  55. Domingo, JL, Nadal, M. Per- and polyfluoroalkyl substances (PFASs) in food and human dietary intake: a review of the recent scientific literature. J Agric Food Chem 2017;65:533���43. https://doi.org/10.1021/acs.jafc.6b04683 . [DOI: 10.1021/acs.jafc.6b04683]
  56. Liew, Z, Goudarzi, H, Oulhote, Y. Developmental exposures to perfluoroalkyl substances (PFASs): an update of associated health outcomes. Curr Environ Health Rep 2018;5:1���19. https://doi.org/10.1007/s40572-018-0173-4 . [DOI: 10.1007/s40572-018-0173-4]
  57. Boas, M, Feldt-Rasmussen, U, Main, KM. Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol 2012;355:240���8. https://doi.org/10.1016/j.mce.2011.09.005 . [DOI: 10.1016/j.mce.2011.09.005]
  58. Luo, D, Wu, W, Pan, Y, Du, B, Shen, M, Zeng, L. Associations of prenatal exposure to per- and polyfluoroalkyl substances with the neonatal birth size and hormones in the growth hormone/insulin-like growth factor Axis. Environ Sci Technol 2021;55:11859���73. https://doi.org/10.1021/acs.est.1c02670 . [DOI: 10.1021/acs.est.1c02670]
  59. DeWitt, JC, Shnyra, A, Badr, MZ, Loveless, SE, Hoban, D, Frame, SR, et al.. Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha. Crit Rev Toxicol 2009;39:76���94. https://doi.org/10.1080/10408440802209804 . [DOI: 10.1080/10408440802209804]
  60. Tian, Y, Zhou, Q, Zhang, L, Li, W, Yin, S, Li, F, et al.. In utero exposure to per-/polyfluoroalkyl substances (PFASs): preeclampsia in pregnancy and low birth weight for neonates. Chemosphere 2023;313:137490. https://doi.org/10.1016/j.chemosphere.2022.137490 . [DOI: 10.1016/j.chemosphere.2022.137490]
  61. Vanden Heuvel, JP, Thompson, JT, Frame, SR, Gillies, PJ. Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol Sci : Offi J Soci Toxicol 2006;92:476���89. https://doi.org/10.1093/toxsci/kfl014 . [DOI: 10.1093/toxsci/kfl014]
  62. Gui, S-Y, Chen, Y-N, Wu, K-J, Liu, W, Wang, W-J, Liang, H-R, et al.. Association between exposure to per- and polyfluoroalkyl substances and birth outcomes: a systematic review and meta-analysis. Front Public Health 2022;10. https://doi.org/10.3389/fpubh.2022.855348 . [DOI: 10.3389/fpubh.2022.855348]
  63. Bach, CC, Bech, BH, Brix, N, Nohr, EA, Bonde, JP, Henriksen, TB. Perfluoroalkyl and polyfluoroalkyl substances and human fetal growth: a systematic review. Crit Rev Toxicol 2015;45:53���67. https://doi.org/10.3109/10408444.2014.952400 . [DOI: 10.3109/10408444.2014.952400]
  64. Lam, J, Koustas, E, Sutton, P, Johnson, PI, Atchley, DS, Sen, S, et al.. The Navigation Guide - evidence-based medicine meets environmental health: integration of animal and human evidence for PFOA effects on fetal growth. Environ Health Perspect 2014;122:1040���51. https://doi.org/10.1289/ehp.1307923 . [DOI: 10.1289/ehp.1307923]
  65. Maisonet, M, Terrell, ML, McGeehin, MA, Christensen, KY, Holmes, A, Calafat, AM, et al.. Maternal concentrations of polyfluoroalkyl compounds during pregnancy and fetal and postnatal growth in British girls. Environ Health Perspect 2012;120:1432���7. https://doi.org/10.1289/ehp.1003096 . [DOI: 10.1289/ehp.1003096]
  66. Marks, KJ, Cutler, AJ, Jeddy, Z, Northstone, K, Kato, K, Hartman, TJ. Maternal serum concentrations of perfluoroalkyl substances and birth size in British boys. Int J Hyg Environ Health 2019;222:889���95. https://doi.org/10.1016/j.ijheh.2019.03.008 . [DOI: 10.1016/j.ijheh.2019.03.008]
  67. Taibl, KR, Liang, D, Dunlop, AL, Barr, DB, Smith, MR, Steenland, K, et al.. Pregnancy-related hemodynamic biomarkers in relation to trimester-specific maternal per ��� and polyfluoroalkyl substances exposures and adverse birth outcomes. Environ Pollut 2023;323. https://doi.org/10.1016/j.envpol.2023.121331 . [DOI: 10.1016/j.envpol.2023.121331]
  68. Dzierlenga, MW, Crawford, L, Longnecker, MP. Birth weight and perfluorooctane sulfonic acid: a random-effects meta-regression analysis. Environ Epidemiol 2020;4. https://doi.org/10.1097/ee9.0000000000000095 . [DOI: 10.1097/ee9.0000000000000095]
  69. Stein, CR, Savitz, DA, Dougan, M. Serum levels of perfluorooctanoic acid and perfluorooctane sulfonate and pregnancy outcome. Am J Epidemiol 2009;170:837���46. https://doi.org/10.1093/aje/kwp212 . [DOI: 10.1093/aje/kwp212]
  70. Census, race and science. Nat Genet 2000;24:97���8. https://doi.org/10.1038/72884 . [DOI: 10.1038/72884]
  71. Kee, KH, Seo, JI, Kim, SM, Shiea, J, Yoo, HH. Per- and polyfluoroalkyl substances (PFAS): trends in mass spectrometric analysis for human biomonitoring and exposure patterns from recent global cohort studies. Environ Int 2024;194:109117. https://doi.org/10.1016/j.envint.2024.109117 . [DOI: 10.1016/j.envint.2024.109117]
  72. Andersen, CS, Fei, C, Gamborg, M, Nohr, EA, S��rensen, TI, Olsen, J. Prenatal exposures to perfluorinated chemicals and anthropometric measures in infancy. Am J Epidemiol 2010;172:1230���7. https://doi.org/10.1093/aje/kwq289 . [DOI: 10.1093/aje/kwq289]

Word Cloud

Created with Highcharts 10.0.0exposureneonatalbirthweightmaternalnegativecorrelationheterogeneitysubstancesmeta-analysisshowedmid-to-latepregnancyPFASstudysignificantlyassociationPFOS47highp<00001significantPFOA31PFNAmediump=0perfluoroalkylatedreviewstudiesshownperfluoroalkylmayrelatedpurposeexplorerelationshippaperspublishedMarch2024retrievedWebSciencePubMedEmbasedatabasesthoroughcarriedinvolvingdataextracted1673samplesobtainedtotal24articlesfound= -715595���%CI= -114 -2862=6415���%Similarly= -812695���%CI= -12608 -3643=6723���%Subunitanalysisdelivery= -978795���%CI= -18183 -1392= -1380695���%CI= -25591 -2020= -858995���%CI= -139 -32also= -903995���%CI= -15290 -2788Howeverobserved=39595%CI= -104118=4056���%0574PFHxS=46195���%CI= -10601981=2927���%1368researchneededbetterunderstandimplicationsfindingshealthweight:systemsystematic

Similar Articles

Cited By

No available data.