Infectious Disease superspreading is a phenomenon where few primary cases generate unexpectedly large numbers of secondary cases. Superspreading, is frequently documented in epidemiology literature, and is considered a consequence of heterogeneity in transmission. Since understanding the risks of superspreading became a rising concern from both statistical modelling and public health aspects, the R package modelSSE provides comprehensive analytical tools to characterize transmission heterogeneity. The package modelSSE integrates recent advances in statistical methods, such as decomposition of reproduction number, for modelling Infectious Disease superspreading using various types and sources of contact tracing data that allow models to be grounded in real-world observations. This study provided an overview of the theoretical background and implementation of modelSSE, designed to facilitate learning Infectious Disease transmission, and explore novel research questions for transmission risks and superspreading potentials. Detailed examples of classic, historical Infectious Disease datasets are given for demonstration and model extensions.
Adam David (2020) A guide to R - the pandemic���s misunderstood metric. Nature 583(7816):346���349
Adam Dillon C, Peng Wu, Wong Jessica Y, Lau Eric HY, Tsang Tim K, Cauchemez Simon, Leung Gabriel M, Cowling Benjamin J (2020) Clustering and superspreading potential of sars-cov-2 infections in Hong Kong. Nat Med 26(11):1714���1719
Adler Avraham (2013) Delaporte: Statistical Functions for the Delaporte Distribution. R package version 8.4.1
Althaus Christian L (2015) Ebola superspreading. Lancet Infect Dis 15(5):507���508
Azam James M, Funk Sebastian, Finger Flavio (2024) epichains: Simulating and Analysing Transmission Chain Statistics Using Branching Process Models. R package version 0.1.0, https://epiverse-trace.github.io/epichains/
Blumberg Seth, Funk Sebastian, Pulliam Juliet RC (2014) Detecting differential transmissibilities that affect the size of self-limited outbreaks. PLoS Pathog 10(10):e1004452
Blumberg Seth, Lloyd-Smith James O (2013) Comparing methods for estimating r0 from the size distribution of subcritical transmission chains. Epidemics 5(3):131���145
Blumberg Seth, Lloyd-Smith James O (2013) Inference of R0 and transmission heterogeneity from the size distribution of stuttering chains. PLoS Comput Biol 9(5):e1002993
Bolker Benjamin M (2008) Ecological models and data in R. Princeton University Press
Cauchemez Simon, Fraser Christophe, Van Kerkhove Maria D, Donnelly Christl A, Riley Steven, Rambaut Andrew, Enouf Vincent, van der Werf Sylvie, Ferguson Neil M (2014) Middle east respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility. Lancet Infect Dis 14(1):50���56
Chowell Gerardo, Abdirizak Fatima, Lee Sunmi, Lee Jonggul, Jung Eunok, Nishiura Hiroshi, Viboud C��cile (2015) Transmission characteristics of mers and sars in the healthcare setting: a comparative study. BMC Med 13(1):1���12
Cori Anne, Ferguson Neil M, Fraser Christophe, Cauchemez Simon (2013) A new framework and software to estimate time-varying reproduction numbers during epidemics. Am J Epidemiol 178(9):1505���1512
Cowles Mary Kathryn, Carlin Bradley P (1996) Markov chain monte carlo convergence diagnostics: a comparative review. J Am Stat Assoc 91(434):883���904
Gaston De Serres, Gay Nigel J, Farrington Paddy C (2000) Epidemiology of transmissible diseases after elimination. Am J Epidemiol 151(11):1039���1048
Delignette-Muller Marie Laure, Dutang Christophe (2015) fitdistrplus: an r package for fitting distributions. J Stat Softw 64:1���34
Diekmann Odo, Heesterbeek Johan Andre Peter (2000) Mathematical epidemiology of infectious diseases: model building, analysis and interpretation, volume 5. John Wiley & Sons
Endo Akira, Abbott Sam, Kucharski Adam J, Funk Sebastian et al (2020) Estimating the overdispersion in covid-19 transmission using outbreak sizes outside china. Wellcome Open Research, 5
Farrington CP, Kanaan MN, Gay NJ (2003) Branching process models for surveillance of infectious diseases controlled by mass vaccination. Biostatistics 4(2):279���295
Fasina Folorunso Oludayo, Shittu Adebayo, Lazarus David, Tomori Oyewale, Simonsen Lone, Viboud Cecile, Chowell Gerardo (2014) Transmission dynamics and control of ebola virus disease outbreak in nigeria, july to september 2014. Eurosurveillance, 19(40):20920
Faye Ousmane, Bo��lle Pierre-Yves, Heleze Emmanuel, Faye Oumar, Loucoubar Cheikh, Magassouba N���Faly, Soropogui Barr��, Keita Sakoba, Gakou Tata, Koivogui Lamine et al (2015) Chains of transmission and control of ebola virus disease in Conakry, Guinea, in 2014: an observational study. Lancet Infect Dis 15(3):320���326
Ferguson Neil M, Fraser Christophe, Donnelly Christl A, Ghani Azra C, Anderson Roy M (2004) Public health risk from the avian h5n1 influenza epidemic. Science 304(5673):968���969
Fine Paul EM (2003) The interval between successive cases of an infectious disease. Am J Epidemiol 158(11):1039���1047
Fine PEM, Jezek Z, Grab B, Dixon H (1988) The transmission potential of monkeypox virus in human populations. Int J Epidemiol 17(3):643���650
Fraser Christophe (2007) Estimating individual and household reproduction numbers in an emerging epidemic. PLoS ONE 2(8):e758
Galvani Alison P, May Robert M (2005) Dimensions of superspreading. Nature 438(7066):293���295
Garske T, Rhodes CJ (2008) The effect of superspreading on epidemic outbreak size distributions. J Theor Biol 253(2):228���237
G��mez-Carballa Alberto, Pardo-Seco Jacobo, Bello Xabier, Martin��n-Torres Federico, Salas Antonio (2021) Superspreading in the emergence of covid-19 variants. Trends Genet 37(12):1069���1080
Guo Zihao, Zhao Shi, Lee Shui Shan, Hung Chi Tim, Wong Ngai Sze, Chow Tsz Yu, Yam Carrie Ho Kwan, Wang Maggie Haitian, Wang Jingxuan, Chong Ka Chun et al (2023) A statistical framework for tracking the time-varying superspreading potential of covid-19 epidemic. Epidemics 42:100670
Guo Zihao, Zhao Shi, Ryu Sukhyun, Mok Chris Ka Pun, Hung Chi Tim, Chong Ka Chun, Yeoh Eng Kiong (2022) Superspreading potential of infection seeded by the sars-cov-2 omicron ba. 1 variant in south Korea. J Infect 85(3):e77���e79
Ho Faith, Parag Kris V, Adam Dillon C, Lau Eric HY, Cowling Benjamin J, Tsang Tim K (2022) Accounting for the potential of overdispersion in estimation of the time-varying reproduction number. Epidemiology 34(2):201���205
Hwang Hari, Lim Jun-Sik, Song Sun-Ah, Achangwa Chiara, Sim Woobeom, Kim Giho, Ryu Sukhyun (2022) Transmission dynamics of the delta variant of sars-cov-2 infections in south Korea. J Infect Dis 225(5):793���799
Jansen Vincent AA, Stollenwerk Nico, Jensen Henrik Jeldtoft, Ramsay ME, Edmunds WJ, Rhodes CJ (2003) Measles outbreaks in a population with declining vaccine uptake. Science 301(5634):804���804
Johnson Norman L, Kemp Adrienne W, Kotz Samuel (2005) Univariate discrete distributions, volume 444. John Wiley & Sons
King Aaron A, Nguyen Dao, Ionides Edward L (2016) Statistical inference for partially observed markov processes via the r package pomp. J Stat Softw 69:1���43
Ko Yura K, Furuse Yuki, Ninomiya Kota, Otani Kanako, Akaba Hiroki, Miyahara Reiko, Imamura Tadatsugu, Imamura Takeaki, Cook Alex R, Saito Mayuko et al (2022) Secondary transmission of sars-cov-2 during the first two waves in Japan, demographic characteristics overdispersion. Int J Infect Dis 116:365���373
Kucharski AJ, Althaus Christian L (2015) The role of superspreading in middle east respiratory syndrome coronavirus (mers-cov) transmission. Eurosurveillance 20(25):21167
Lambert Joshua W, Kucharski Adam, Adam Dillon C (2024) superspreading: Estimate Individual-Level Variation in Transmission. R package version 0.2.0.9000, https://epiverse-trace.github.io/superspreading/
Lambert Joshua W, Tamayo Carmen (2025) simulist: Simulate Disease Outbreak Line List and Contacts Data
Leung Kathy, Wu Joseph T, Leung Gabriel M (2021) Effects of adjusting public health, travel, and social measures during the roll-out of Covid-19 vaccination: a modelling study. Lancet Public Health 6(9):e674���e682
Li Qun, Guan Xuhua, Peng Wu, Wang Xiaoye, Zhou Lei, Tong Yeqing, Ren Ruiqi, Leung Kathy SM, Lau Eric HY, Wong Jessica Y et al (2020) Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 382(13):1199���1207
Lim Jun-Sik, Noh Eunbi, Shim Eunha, Ryu Sukhyun (2021) Temporal changes in the risk of superspreading events of coronavirus disease 2019. Open Forum Infect Dis 8(7):ofab350
Lloyd-Smith James O, Schreiber Sebastian J, Ekkehard Kopp P, Getz Wayne M (2005) Superspreading and the effect of individual variation on disease emergence. Nature 438(7066):355���359
Lorenz Max O (1905) Methods of measuring the concentration of wealth. Publ Am Stat Assoc 9(70):209���219
Lu Yaoqin, Guo Zihao, Zeng Ting, Sun Shengzhi, Lu Yanmei, Teng Zhidong, Tian Maozai, Wang, Shulin Li Jun, Fan Xucheng et al (2023) Case clustering, contact stratification, and transmission heterogeneity of sars-cov-2 omicron ba. 5 variants in Urumqi, China: An observational study. Journal of Global Health, 13:06018
Meyerowitz Eric A, Richterman Aaron, Gandhi Rajesh T, Sax Paul E (2021) Transmission of sars-cov-2: a review of viral, host, and environmental factors. Ann Intern Med 174(1):69���79
Nagraj V, Randhawa N, Campbell F, Crellen T, Sudre B, Jombart T (2018) epicontacts: Handling, visualisation and analysis of epidemiological contacts. F1000Research, 7:566
Nigel Gay J, De Serres Gaston, Farrington Paddy C, Redd Susan B (2004) Assessment of the status of measles elimination from reported outbreaks: United states, 1997���1999. Journal of Infectious Diseases, 189(Supplement_1):S36���S42
Nishiura H, Miyamatsu Y, Chowell G, Saitoh M (2015) Assessing the risk of observing multiple generations of middle east respiratory syndrome (MERS) cases given an imported case. Eurosurveillance 20(27):21181
Nishiura Hiroshi, Yan Ping, Sleeman Candace K, Mode Charles J (2012) Estimating the transmission potential of supercritical processes based on the final size distribution of minor outbreaks. J Theor Biol 294:48���55
Poletto Chiara, Pelat Camille, Daniel L��vy-Bruhl Y, Yazdanpanah PY Boelle, Colizza V (2014) Assessment of the middle east respiratory syndrome coronavirus (mers-cov) epidemic in the middle east and risk of international spread using a novel maximum likelihood analysis approach. Eurosurveillance 19(23):20824
Riou Julien, Althaus Christian L (2020) Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-ncov), December 2019 to January 2020. Eurosurveillance 25(4):2000058
Shen Zhuang, Ning Fang, Zhou Weigong, He Xiong, Lin Changying, Chin Daniel P, Zhu Zonghan, Schuchat Anne (2004) Superspreading SARS events, Beijing, 2003. Emerg Infect Dis 10(2):256
Stein Richard A (2011) Super-spreaders in infectious diseases. Int J Infect Dis 15(8):e510���e513
Tariq Amna, Lee Yiseul, Roosa Kimberlyn, Blumberg Seth, Yan Ping, Ma Stefan, Chowell Gerardo (2020) Real-time monitoring the transmission potential of Covid-19 in Singapore, March 2020. BMC Med 18(1):1���14
Van den Driessche Pauline (2017) Reproduction numbers of infectious disease models. Infect Dis Modell 2(3):288���303
Wallinga Jacco, Teunis Peter (2004) Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol 160(6):509���516
Wang Jingxuan, Chen Xiao, Guo Zihao, Zhao Shi, Huang Ziyue, Zhuang Zian, Wong Eliza Lai-yi, Zee Benny Chung-Ying, Chong Marc Ka Chun, Wang Maggie Haitian et al (2021) Superspreading and heterogeneity in transmission of SARS, MERS, and Covid-19: a systematic review. Comput Struct Biotechnol J 19:5039���5046
Wang Kai, Luan Zemin, Guo Zihao, Lei Hao, Zeng Ting, Lin Yu, Li Hujiaojiao, Tian Maozai, Ran Jinjun, Zhao Shi (2023) Superspreading potentials of SARS-CoV-2 delta variants across different contact settings in eastern China: a retrospective observational study. J Infect Public Health 16(5):689���696
Wegehaupt Oliver, Endo Akira, Vassall Anna (2023) Superspreading, overdispersion and their implications in the SARS-C0V-2 (Covid-19) pandemic: a systematic review and meta-analysis of the literature. BMC Public Health 23(1):1���22
Woolhouse Mark EJ, Dye C, Etard J-F, Smith T, Charlwood JD, Garnett GP, Hagan P, Hii JL xK, Ndhlovu PD, Quinnell RJ et al (1997) Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proceedings of the National Academy of Sciences 94(1):338���342
Wu Joseph T, Leung Kathy, Leung Gabriel M (2020) Nowcasting and forecasting the potential domestic and international spread of the 2019-ncov outbreak originating in Wuhan, China: a modelling study. Lancet 395(10225):689���697
Xu Xiao-Ke, Liu Xiao Fan, Wu Ye, Ali Sheikh Taslim, Du Zhanwei, Bosetti Paolo, Lau Eric HY, Cowling Benjamin J, Wang Lin (2020) Reconstruction of transmission pairs for novel coronavirus disease 2019 (Covid-19) in mainland China: estimation of superspreading events, serial interval, and hazard of infection. Clin Infect Dis 71(12):3163���3167
Yan Ping (2008) Distribution theory, stochastic processes and infectious disease modelling. In: Brauer Fred, van den Driessche Pauline, Wu Jianhong (eds) Mathematical Epidemiology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 229���293. https://doi.org/10.1007/978-3-540-78911-6_10
[DOI: 10.1007/978-3-540-78911-6_10]
Ypma Rolf J. F., Altes Hester Korthals, van Soolingen Dick, Wallinga Jacco, van Ballegooijen W. Marijn (2013) A sign of superspreading in tuberculosis: highly skewed distribution of genotypic cluster sizes. Epidemiology 24(3):395���400. https://doi.org/10.1097/EDE.0b013e3182878e19
[DOI: 10.1097/EDE.0b013e3182878e19]
Zhang Yunjun, Britton Tom, Zhou Xiaohua (2022) Monitoring real-time transmission heterogeneity from incidence data. PLoS Comput Biol 18(12):e1010078
Zhao Shi (2023) modelSSE: Modelling Infectious Disease Superspreading from Contact Tracing Data. R package version 0.1-3, https://doi.org/10.32614/CRAN.package.modelSSE
Zhao Shi, Chong Marc KC, Ryu Sukhyun, Zihao Guo Mu, He Boqiang Chen, Musa Salihu S, Wang Jingxuan, Yushan Wu, He Daihai et al (2022) Characterizing superspreading potential of infectious disease: decomposition of individual transmissibility. PLoS Comput Biol 18(6):e1010281
Zhao Shi, Lin Qianyin, Ran Jinjun, Musa Salihu S, Yang Guangpu, Wang Weiming, Lou Yijun, Gao Daozhou, Yang Lin, He Daihai et al (2020) Preliminary estimation of the basic reproduction number of novel coronavirus (2019-ncov) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak. Int J Infect Dis 92:214���217
Zhao Shi, Shen Mingwang, Musa Salihu S, Guo Zihao, Ran Jinjun, Zhihang Peng Yu, Zhao Marc KC, Chong Daihai He, Wang Maggie H (2021) Inferencing superspreading potential using zero-truncated negative binomial model: exemplification with Covid-19. BMC Med Res Methodol 21:1���8