Recycling Biowaste and Residuals into Chemical Products.

Thomas Bayer, Alexander May, Manfred Kircher
Author Information
  1. Thomas Bayer: Provadis School of International Management and Technology AG, Frankfurt am Main, Germany.
  2. Alexander May: Provadis School of International Management and Technology AG, Frankfurt am Main, Germany.
  3. Manfred Kircher: KADIB - Kircher Advice in Bioeconomy, Frankfurt am Main, Germany. kircher@kadib.de.

Abstract

Today, organic chemical products are predominantly produced based on fossil raw materials. The demand for climate-friendly products, legal requirements and the EU emissions trading scheme (EU-ETS) are forcing the chemical industry to focus on increased recycling and production based on CO and biomass in the future. To avoid competition with the food sector associated with the industrial use of biomass, organic waste, residual materials and CO are to be tapped as carbon sources. This chapter describes the volume potential of these alternative raw materials in the EU and technologies for their utilisation in basic, speciality and fine chemical products for various applications and markets. The question of the availability of sustainable carbon sources arises for the large-volume products of basic chemistry. A detailed techno-economic analysis (TEA) to produce methanol based on CO is therefore presented as an example. Finally, the requirements for achieving the raw material transition by 2050 are discussed.

Keywords

References

  1. EC (2023) European Climate Law. https://climate.ec.europa.eu/eu-action/european-climate-law_en
  2. CEFIC (2024) The European chemical industry a vital part of Europe’s future. https://cefic.org/app/uploads/2023/12/2023_Facts_and_Figures_The_Leaflet.pdf
  3. Bazzanella A, Ausfelder F (2017) Low carbon energy and feedstock for the European chemical industry. Dechema, Frankfurt am Main. https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf
  4. KPMG (2023) Decarbonizing the chemical industry in Europe and beyond. https://kpmg.com/be/en/home/insights/2023/01/ch-decarbonizing-the-chemical-industry-in-europe-and-beyond.html
  5. fmi (2023) Europe fine chemical market outlook (2022–2032). https://www.futuremarketinsights.com/reports/europe-fine-chemical-market
  6. McKinsey (2023) Decarbonising the chemical industry. https://www.mckinsey.com/industries/chemicals/our-insights/decarbonizing-the-chemical-industry
  7. CEFIC (2024) 2023 Facts and figures of the European chemical industry. https://cefic.org/a-pillar-of-the-european-economy/facts-and-figures-of-the-european-chemical-industry/
  8. Deming D (2023) M. King Hubbert and the rise and fall of peak oil theory. AAPG Bull 107(6):851–861. https://doi.org/10.1306/03202322131 [DOI: 10.1306/03202322131]
  9. von Braun J (2022) Exogenous and endogenous drivers of bioeconomy and science diplomacy. EFB Bioecon J 2:100029. https://doi.org/10.1016/j.bioeco.2022.100029 [DOI: 10.1016/j.bioeco.2022.100029]
  10. OECD (2009) The bioeconomy to 2030. Designing a policy agenda. OECD, Paris
  11. EU (2012) Innovating for sustainable growth – a bioeconomy for Europe. https://op.europa.eu/en/publication-detail/-/publication/1f0d8515-8dc0-4435-ba53-9570e47dbd51
  12. EU (2013) A bioeconomy strategy for Europe: working with nature for a more sustainable way of living. https://op.europa.eu/en/publication-detail/-/publication/26b789d4-00d1-4ee4-b32e-2303dfd2207c
  13. Gardossi L, Philp J, Fava F, Winickoff D, D’Aprile L, Dell’Anno B, Marvik OJ, Lenzi A (2023) Bioeconomy national strategies in the G20 and OECD countries: sharing experiences and comparing existing policies. https://www.sciencedirect.com/science/article/pii/S2667041023000083
  14. Covestro (2024) World’s first pilot plant for bio-based aniline. https://www.covestro.com/press/worlds-first-pilot-plant-for-bio-based-aniline/
  15. EC (2016) The EU bio-based industry: results from a survey. https://joint-research-centre.ec.europa.eu/jrc-news-and-updates/future-bio-based-chemicals-eu-bioeconomy-2019-01-23_en
  16. Wellenreuther C, Wolf A, Zander N (2022) Cost competitiveness of sustainable bioplastic feedstocks – a Monte Carlo analysis for polylactic acid. Clean Eng Technol 6:100411. https://doi.org/10.1016/j.clet.2022.100411 [DOI: 10.1016/j.clet.2022.100411]
  17. Muscat A, de Olde EM, Ripoll-Bosch R et al (2021) Principles, drivers and opportunities of a circular bioeconomy. Nat Food 2:561–566. https://doi.org/10.1038/s43016-021-00340-7 [DOI: 10.1038/s43016-021-00340-7]
  18. Hermundsdottir F, Aspelund A (2021) Sustainability innovations and firm competitiveness: a review. J Clean Prod 280(1):124715. https://doi.org/10.1016/j.jclepro.2020.124715 [DOI: 10.1016/j.jclepro.2020.124715]
  19. Ruf J, Emberger-Klein A, Menrad K (2022) Consumer response to bio-based products – a systematic review. Sustain Prod Consump 34:353–370. https://doi.org/10.1016/j.spc.2022.09.022 [DOI: 10.1016/j.spc.2022.09.022]
  20. Eurostat (2023) Glossary: greenhouse gas (GHG). https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Greenhouse_gas_(GHG)
  21. EC (2024) EU Emissions Trading System (EU ETS). https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets_en
  22. EC (2019). Guidelines on reporting climate-related information. https://ec.europa.eu/finance/docs/policy/190618-climate-related-information-reporting-guidelines_en.pdf
  23. Dechezleprêtre A, Nachtigall D, Venmans F (2023) The joint impact of the European Union emissions trading system on carbon emissions and economic performance. J Environ Econ Manag 118:102758. https://doi.org/10.1016/j.jeem.2022.102758 [DOI: 10.1016/j.jeem.2022.102758]
  24. GHG Protocol (2024) FAQ. What are scope 3 emissions? https://ghgprotocol.org/sites/default/files/2022-12/FAQ.pdf
  25. Zero Waste Europe (2021) Waste incineration under the EU ETS. https://zerowasteeurope.eu/wp-content/uploads/2021/10/ZWE_Delft_Oct21_Waste_Incineration_EUETS_Study.pdf
  26. EUR-Lex (2018) Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. https://eur-lex.europa.eu/eli/dir/2018/2001/oj
  27. EP (2022) Inclusion of municipal waste incineration plants in the EU ETS. https://www.europarl.europa.eu/doceo/document/E-9-2022-003517_EN.html#:~:text=On 22 June 2022, the incineration plants as of 2026
  28. BMT (2024) Naphtha. https://cargohandbook.com/Naphtha#:~:text=In%20petroleum%20engineering,%20full%20range,of%20crude%20oil,%20by%20weight
  29. BAFU (2024) Chemikalien: Das Wichtigste in Kürze (Chemicals: the most important facts in brief). https://www.bafu.admin.ch/bafu/de/home/themen/chemikalien/inkuerze.html#:~:text=Bis%20heute%20wurden%20weltweit%20mehr,vervielfacht,%20von%20weltweit%201%20Mio
  30. Lopez G, Keiner D, Fasihi M, Koiranen T, Breyer C (2023) From fossil to green chemicals: sustainable pathways and new carbon feedstocks for the global chemical industry. Energy Environ Sci. 16:2879–2909. https://pubs.rsc.org/en/content/articlehtml/2023/ee/d3ee00478c
  31. CEFIC (2024) Low carbon energy and feedstock for the European chemical industry study. https://cefic.org/a-solution-provider-for-sustainability/a-journey-to-sustainability/low-carbon-energy-and-feedstock-for-the-european-chemical-industry-study/
  32. Magsudov E (2022) Feedstock in chemical industry. https://sourcezon.com/articles/feedstock-in-chemical-industry
  33. EC (2019) Insights into the European market for bio-based chemicals. jrc_europeanmarket_biochemicals_factsheet_online.pdf
  34. Dechema, Futurecamp (2019) Roadmap Chemie 2050. https://www.vci.de/vci/downloads-vci/publikation/2019-10-09-studie-roadmap-chemie-2050-treibhausgasneutralitaet.pdf
  35. Avitabile V, Baldoni E, Baruth B, Bausano G, Boysen-Urban K, Caldeira C, Camia A, Cazzaniga N, Ceccherini G, De Laurentiis V, Doerner H, Giuntoli J, Gras M, Guillen Garcia J, Gurria P, Hassegawa M, Jasinevičius G, Jonsson R, Konrad C, Kupschus S, La Notte A, M’barek R, Mannini A, Migliavacca M, Mubareka S, Patani S, Pilli R, Rebours C, Ronchetti G, Ronzon T, Rougieux P, Sala S, Sanchez Lopez J, Sanye Mengual E, Sinkko T, Sturm V, Van Leeuwen M, Vasilakopoulos P, Verkerk PJ, Virtanen J, Winker H, Zulian G (2023) Mubareka S, Migliavacca M, Sanchez Lopez J (eds) Biomass production, supply, uses and flows in the European Union. Publications Office of the European Union, Luxembourg, JRC132358. https://doi.org/10.2760/811744 [DOI: 10.2760/811744]
  36. EC (2019) Global food supply and demand. https://agriculture.ec.europa.eu/system/files/2019-09/market-brief-food-challenges-sep2019_en_0.pdf
  37. EC (2023) Bioenergy report outlines progress being made across the EU. https://energy.ec.europa.eu/news/bioenergy-report-outlines-progress-being-made-across-eu-2023-10-27_en#:~:text=Bioenergy produced from agricultural, forestry, commission report on bioenergy sustainability
  38. Climate KIC (2021) New report details way forward as future biomass demand may exceed supply. https://www.climate-kic.org/in-detail/new-report-shows-future-biomass-demand-may-exceed-supply/#:~:text=Bioenergy%20(energy%20produced%20from%20biomass,energy%20and%20materials%20by%202050
  39. EC (2024) Wood: building on an abundant natural resource. https://projects.research-and-innovation.ec.europa.eu/en/horizon-magazine/wood-buildingabundant-natural-resource
  40. EC (2024) Pulp and paper industry. https://single-market-economy.ec.europa.eu/sectors/raw-materials/related-industries/forest-based-industries/pulp-and-paper-industry_en
  41. EC (2019) The future of bio-based chemicals in the EU bioeconomy. https://joint-research-centre.ec.europa.eu/jrc-news-and-updates/future-bio-based-chemicals-eu-bioeconomy-2019-01-23_en
  42. Boulamanti A, Moya JA (2017) Energy efficiency and GHG emissions: prospective scenarios for the chemical and petrochemical industry. JRC Science for Policy Report, p 7. https://publications.jrc.ec.europa.eu/repository/handle/JRC105767
  43. Ma S, He F, Tian D, Zou D, Yan Z, Yang Y, Zhou T, Huang K, Shen H, Fang J (2018) Variations and determinants of carbon content in plants: a global synthesis. Biogeosciences 15:693–702. https://doi.org/10.5194/bg-15-693-2018 [DOI: 10.5194/bg-15-693-2018]
  44. EC (2024) Biodiversity strategy for 2030. https://environment.ec.europa.eu/strategy/biodiversity-strategy-2030_en#implementation
  45. EC (2023) EU agricultural outlook 2023-35: a transitioning and resilient EU farming sector will cope with challenges and embrace opportunities. https://agriculture.ec.europa.eu/news/eu-agricultural-outlook-2023-35-transitioning-and-resilient-eu-farming-sector-will-cope-challenges-2023-12-07_en
  46. EBA (2024) New record for biomethane production in Europe shows EBA/GIE biomethane map 2022-2023. https://www.europeanbiogas.eu/strongnew-record-for-biomethane-production-in-europebrshows-eba-gie-biomethane-map-2022-2023-strong/
  47. Moonsamy TA, Rajauria G, Priyadarshini A, Jansen MAK (2024) Food waste: analysis of the complex and variable composition of a promising feedstock for valorisation. Food Bioprod Proc 148:31–42. https://doi.org/10.1016/j.fbp.2024.08.012 [DOI: 10.1016/j.fbp.2024.08.012]
  48. KIT (2022) Welcome at bioliq®. https://www.bioliq.de/english/index.php
  49. BioBall (2024) Project InA. https://www.urban-bioeconomy.de/bioball/ina_en.html
  50. BioBall (2024) Project GlyChem. https://www.urban-bioeconomy.de/bioball/glychem_en.html
  51. enArgus (2014) Auslegung, Bau und Betrieb von 5 MW und 20 MW Methanisierungsanlagen für das Energiespeicherkonzept ‘Power to Gas’ – Eine Vorstudie (Design, construction and operation of 5 MW and 20 MW methanation plants for the energy storage concept ‘Power to Gas’ – a preliminary study). Infraserv Höchst. https://www.enargus.de/pub/bscw.cgi/?op=enargus.eps2&q=Infraserv%20GmbH%20&%20Co.%20H%C3%B6chst%20KG&v=10&id=669917
  52. Methanol Institute (2024) Renewable methanol. https://www.methanol.org/renewable/
  53. Irena and Methanol Institute (2021) Innovation outlook: renewable methanol. International Renewable Energy Agency, Abu Dhabi
  54. Maritime Knowledge Centre, TNO, TU Delft (2018) Methanol as an alternative fuel for vessels. Final report project no. MIIP 001-2017
  55. EU (2023) Decarbonising maritime transport – FuelEU Maritime. https://transport.ec.europa.eu/transport-modes/maritime/decarbonising-maritime-transport-fueleu-maritime_en#:~:text=Adopted in July 2023 as, for ships, essential to support
  56. Kirchner J, Li Q, Syper P, Drescher H, Hofmann CF, May A, Bayer T (2024) Utilization of CO-containing waste gas streams from the lime industry and waste-to-energy plants. Chem Ing Tech. https://doi.org/10.1002/cite.202300222
  57. Rumble JR (ed) (2022) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data.103rd edn. CRC Press, Boca Raton
  58. Topham S, Bazzanella A, Schiebahn S, Luhr S, Zhao L, Otto A, Stolten D (2014) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim. https://doi.org/10.1002/14356007.a05_165.pub2 [DOI: 10.1002/14356007.a05_165.pub2]
  59. Töpler J, Lehmann J (eds) (2017) Wasserstoff und Brennstoffzelle: Technologien und Marktperspektiven (Hydrogen and fuel cells: technologies and market prospects). Springer, Berlin
  60. Air Liquide (2024) PEM electrolyzers to produce renewable hydrogen: how does it work? https://www.airliquide.com/stories/hydrogen/pem-electrolyzers-produce-renewable-hydrogen-how-does-it-work
  61. Tenhumberg N, Büker K (2020) Ecological and economic evaluation of hydrogen production by different water electrolysis technologies. Chem Ing Tech 92(10):1586–1595. https://doi.org/10.1002/cite.202000090 [DOI: 10.1002/cite.202000090]
  62. Tjarks G (2017) PEM-Elektrolyse-Systeme zur Anwendung in Power-to-Gas Anlagen (PEM electrolysis systems for use in power-to-gas plants). Schriften des Forschungszentrums Jülich, Reihe Energie & Umwelt, vol 366. Forschungszentrum Jülich GmbH, Jülich
  63. Saba SM, Müller M, Robinius M, Stolten D (2018) The investment costs of electrolysis – a comparison of cost studies from the past 30 years. Int J Hydrogen Energy 43:1209–1223. https://doi.org/10.1016/j.ijhydene.2017.11.115 [DOI: 10.1016/j.ijhydene.2017.11.115]
  64. Gas-energy (2024) Wasserstoff aus Erneuerbaren Energien (Hydrogen from renewable energies). https://igas-energy.de/produkte/wasserstoff-aus-erneuerbaren-energien
  65. Fasihi M, Efimova O, Breyer C (2019) Techno-economic assessment of CO direct air capture plants. J Clean Prod 224:957–980. https://doi.org/10.1016/j.jclepro.2019.03.086 [DOI: 10.1016/j.jclepro.2019.03.086]
  66. Joshi P (2020) Floating methanol production; PEP-review 2020-05. IHS Markit
  67. Smolinka T, Wiebe N, Sterchele P, Palzer A, Lehner F, Jansen M (2018) Studie IndWEDe – Industrialisierung der Wasserelektrolyse in Deutschland: Chancen und Herausforderungen für nachhaltigen Wasserstoff für Verkehr, Strom und Wärme (Study IndWEDe – industrialization of water electrolysis in Germany: opportunities and challenges for sustainable hydrogen for transport, electricity and heat). Now-GmbH, Berlin
  68. Fasihi M, Breyer C (2020) Baseload electricity and hydrogen supply based on hybrid PV-wind power plants. J Clean Prod 243:118466. https://doi.org/10.1016/j.jclepro.2019.118466 [DOI: 10.1016/j.jclepro.2019.118466]
  69. Wissenschaftlicher Dienst im Deutschen Bundestag (2020) Produktionskosten von Wasserstoff nach Wasserstofftyp in Deutschland im Jahr 2019 und Prognosen für die Jahre 2030 und 2050 (Production costs of hydrogen by hydrogen type in Germany in 2019 and forecasts for 2030 and 2050). de.statista.com/statistik/daten/studie/1195863/umfrage/produktionskosten-von-wasserstoff-nach-wasserstofftyp-in-deutschland
  70. Stölzel T (11 Mar 2023) Aus diesen Kraftwerken wird Strom nur 1 Cent pro Kilowattstunde kosten (Electricity from these power plants will only cost 1 cent per kilowatt hour). WirtschaftsWoche
  71. Bundesministerium für Wirtschaft und Klimaschutz (2024) Projekt “Element One” in der saudi-arabischen Modellregion “NEOM” (“Element One” project in the Saudi Arabian model region “NEOM”). www.bmwk.de/Redaktion/DE/Wasserstoff/Praxisbeispiele/element-one.html

Word Cloud

Created with Highcharts 10.0.0productschemicalbasedrawmaterialsCOchemicalsorganicrequirementsEUbiomasscarbonsourcesbasicBiowasteTodaypredominantlyproducedfossildemandclimate-friendlylegalemissionstradingschemeEU-ETSforcingindustryfocusincreasedrecyclingproductionfutureavoidcompetitionfoodsectorassociatedindustrialusewasteresidualtappedchapterdescribesvolumepotentialalternativetechnologiesutilisationspecialityfinevariousapplicationsmarketsquestionavailabilitysustainableariseslarge-volumechemistrydetailedtechno-economicanalysisTEAproducemethanolthereforepresentedexampleFinallyachievingmaterialtransition2050discussedRecyclingResidualsChemicalProductsBio-residualsBulkCO2FineMethanolSpecialtyTechnicaleconomicalassessment

Similar Articles

Cited By

No available data.