Biowaste Valorization: The Wine Industry Case.

Michaela Dina Stanescu
Author Information
  1. Michaela Dina Stanescu: Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University, Arad, Romania. stanescu@uav.ro.

Abstract

The wine industry is very important, the European wine production representing over 60% of the global production. According to the European Commission, the total annual wine production (2013-2020) in European countries reached a volume of 165 million hL. Europe is also the most important wine exporter occupying around 70% of the global market. In parallel, the wine industry produces a large quantity of biowaste that, in the context of a sustainable economy, needs to be valorized. In order to protect the environment, the landfilling of such biowaste has to be avoided due to its acidity and the possible generation of hazardous products by decomposition. On the other hand, vinification residues contain valuable compounds like: oils, polyphenols, tocopherols, and organic elements (carbon and nitrogen) making the valorization of these by-products compulsory. Ecological solutions for the valorization of grape seeds, grape skins, stems, as well as wine lees resulting from grape vinification have to be found. Different solutions for the processing of these biowastes to generate added value products are described and the economic aspects underlined.

Keywords

References

  1. Brundtland GH (1987) Report of the World Commission on Environment and Development. https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf
  2. Stanescu MD (2022) Goals for a sustainable development and the environmental protection. Rom J Ecol Environ 4(2):56–61. https://doi.org/10.21698/rjeec.2022.205 [DOI: 10.21698/rjeec.2022.205]
  3. Morseletto P (2020) Targets for a circular economy. Resour Conserv Recycl 153:104553. https://doi.org/10.1016/j.resconrec.2019.104553 [DOI: 10.1016/j.resconrec.2019.104553]
  4. Rajković MB, Popović Minić D, Milinčić D, Zdravković M (2020) Circular economy in food industry. Zast Mater 61(3):229–250. https://doi.org/10.5937/zasmat2003229R6 [DOI: 10.5937/zasmat2003229R6]
  5. Van Ewijk S, Stegemann JA (2016) Limitations of the waste hierarchy for achieving absolute reductions in material throughput. J Clean Prod 132:122–128. https://doi.org/10.1016/j.jclepro.2014.11.051 [DOI: 10.1016/j.jclepro.2014.11.051]
  6. Farzaliyev S (2024) The impact of wine industry to economics. TURAN-SAM 16(61):232–237
  7. Šajn N (2023) Facts and figures: the EU wine sector. Briefing of European Parliament Research Service, PE 751.399. https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/751399/
  8. Statista Database, International Organization of Vine and Wine (2024) State of the vine and wine sector in 2023. http://statista.com/statistics/445651/leadingcountrieswineproductioneurope/ , www.oiv.int/sites/default/files/2024-04/2024_OIV
  9. Bharathiraja B, Iyyappan J, Jayamuthunagai J, Praveen Kumar R, Sirohi R, Gnansounou E, Pandey A (2020) Critical review on bioconversion of winery wastes into value-added products. Ind Crop Prod 158:112954. https://doi.org/10.1016/j.indcrop.2020.112954 [DOI: 10.1016/j.indcrop.2020.112954]
  10. Sirohi R, Tarafdar A, Singh S, Negi T, Kumar Gaur V, Gnansounou E, Bhartiraja B (2020) Green processing and biotechnological potential of grape pomace: current trends and opportunities for sustainable biorefinery. Bioresour Technol 314:123771. https://doi.org/10.1016/j.biortech.2020.123771 [DOI: 10.1016/j.biortech.2020.123771]
  11. Zambelli M, Giovenzana V, Casson A, Tugnolo A, Pampuri A, Vignati S, Beghi R, Guidetti R (2023) Is there mutual methodology among the environmental impact assessment studies of wine production chain? A systematic review. Sci Total Environ 857:159531. https://doi.org/10.1016/j.scitotenv.2022.159531 [DOI: 10.1016/j.scitotenv.2022.159531]
  12. Dede D, Didaskalou E, Bersimis S, Georgakellos D (2020) A statistical framework for assessing environmental performance of quality wine production. Sustainability 12:10246. https://doi.org/10.3390/su122410246 [DOI: 10.3390/su122410246]
  13. Marco-Lajara B, Zaragoza-Sáez P, Martínez-Falcó J, Sánchez-García E (2023) Does green intellectual capital affect green innovation performance? Evidence from the Spanish wine industry. Br Food J 125(4):1469–1487. https://doi.org/10.1108/BFJ-03-2022-0298 [DOI: 10.1108/BFJ-03-2022-0298]
  14. Martínez-Falcó J, Sánchez-García E, Marco-Lajara B, Georgantzis N (2024) The interplay between competitive advantage and sustainability in the wine industry: a bibliometric and systematic review. Discov Sustain 5:13. https://doi.org/10.1007/s43621-024-00196-4 [DOI: 10.1007/s43621-024-00196-4]
  15. Christ KL, Burritt RL (2013) Critical environmental concerns in wine production: an integrative review. J Clean Prod 53:232–242. https://doi.org/10.1016/j.jclepro.2013.04.007 [DOI: 10.1016/j.jclepro.2013.04.007]
  16. Chakka AK, Babu AS (2022) Bioactive compounds of winery by-products: extraction techniques and their potential health benefits. Appl Food Res 2(1):100058. https://doi.org/10.1016/j.afres.2022.100058 [DOI: 10.1016/j.afres.2022.100058]
  17. Kyzas GZ, Symeonidou MP, Matis KA (2016) Technologies of winery wastewater treatment: a critical approach. Desalin Water Treat 57(8):3372–3386. https://doi.org/10.1080/19443994.2014.986535 [DOI: 10.1080/19443994.2014.986535]
  18. International Organization of Vine and Wine, Strategic Plan 2020-2024, https://www.oiv.int/who-we-are/strategy
  19. Guerra M, Ferreira F, Oliveira AA, Pinto T, Teixeira CA (2024) Drivers of environmental sustainability in the wine industry: a life cycle assessment approach. Sustainability 16:5613. https://doi.org/10.3390/su16135613 [DOI: 10.3390/su16135613]
  20. Wagner M, Stanbury P, Dietrich T, Döring J, Ewert J, Foerster C, Freund M, Friedel M, Kammann C, Koch M, Owtram T, Schultz HR, Voss-Fels K, Hanf J (2023) Developing a sustainability vision for the global wine industry. Sustainability 15:10487. https://doi.org/10.3390/su151310487 [DOI: 10.3390/su151310487]
  21. Maicas S, Mateo JJ (2020) Sustainability of wine production. Sustainability 12:559. https://doi.org/10.3390/su12020559 [DOI: 10.3390/su12020559]
  22. Abbate S, Centobelli P, Di Gregorio M (2024) Wine waste valorisation: crushing the research domain. Rev Manag Sci. https://doi.org/10.1007/s11846-024-00779-5
  23. del Mar Contreras M, Romero-García JM, López-Linares JC, Romero I, Castro E (2022) Residues from grapevine and wine production as feedstock for a biorefinery. Food Bioprod Process 134:56–79. https://doi.org/10.1016/j.fbp.2022.05.005 [DOI: 10.1016/j.fbp.2022.05.005]
  24. Calderón-Martín M, Valdés-Sánchez E, Alexandre-Franco MF, Fernández-González MC, Vilanova de la Torre M, Cuerda-Correa EM, Gómez-Serrano V (2022) Waste valorization in winemaking industry: vine shoots as precursors to optimize sensory features in white wine. LWT 163:113601. https://doi.org/10.1016/j.lwt.2022.11360 [DOI: 10.1016/j.lwt.2022.11360]
  25. De Iseppi A, Lomolino G, Marangon M, Curioni A (2020) Current and future strategies for wine yeast lees valorization. Food Res Int 137:109352. https://doi.org/10.1016/j.foodres.2020.109352 [DOI: 10.1016/j.foodres.2020.109352]
  26. Spinei M, Oroian M (2021) The potential of grape pomace varieties as a dietary source of pectic substances. Foods 10(4):867. https://doi.org/10.3390/foods10040867 [DOI: 10.3390/foods10040867]
  27. Almanza-Oliveros A, Bautista-Hernández I, Castro-López C, Aguilar-Zárate P, Meza-Carranco Z, Rojas R, Michel MR, Martínez-Ávila GCG (2024) Grape pomace-advances in its bioactivity, health benefits, and food applications. Foods 13:580. https://doi.org/10.3390/foods13040580 [DOI: 10.3390/foods13040580]
  28. Karastergiou A, Gancel A-L, Jourdes M, Teissedre P-L (2024) Valorization of grape pomace: a review of phenolic composition, bioactivity, and therapeutic potential. Antioxidants 13:1131. https://doi.org/10.3390/antiox13091131 [DOI: 10.3390/antiox13091131]
  29. Milanovic J, Malicanin M, Rakic V, Jevremovic N, Karabegovic I, Danilovic B (2021) Valorization of winery waste: prokupac grape seed as a source of nutritionally valuable oil. Agronomy 11:1864. https://doi.org/10.3390/agronomy11091864 [DOI: 10.3390/agronomy11091864]
  30. Gitea MA, Gitea D, Tit DM, Bungau SG, Bogdan MA, Radu A-F, Dulf FV, Pasca MB (2023) Organically cultivated vine varieties-distinctive qualities of the oils obtained from grape seeds. Sustainability 15:11037. https://doi.org/10.3390/su151411037 [DOI: 10.3390/su151411037]
  31. Salem Y, Rajha HN, van den Broek LAM, Safi C, Togtema A, Manconi M, Manca ML, Debs E, Hobaika Z, Maroun RG, Louka N (2022) Multi-step biomass fractionation of grape seeds from pomace, a zero-waste approach. Plants 11:2831. https://doi.org/10.3390/plants11212831 [DOI: 10.3390/plants11212831]
  32. Pinasseau L, Vallverdú-Queralt A, Verbaere A, Roques M, Meudec E, Le Cunff L, Péros JP, Ageorges A, Sommerer N, Boulet JC, Terrier N, Cheynier V (2017) Cultivar diversity of grape skin polyphenol composition and changes in response to drought investigated by LC-MS based metabolomics. Front Plant Sci 8:1826. https://doi.org/10.3389/fpls.2017.01826 [DOI: 10.3389/fpls.2017.01826]
  33. Ping L, Brosse N, Sannigrahi P, Ragauskas A (2011) Evaluation of grape stalks as a bioresource. Ind Crop Prod 33:200–204. https://doi.org/10.1016/j.indcrop.2010.10.009 [DOI: 10.1016/j.indcrop.2010.10.009]
  34. Litskas VD, Tzortzakis N, Stavrinides MC (2020) Determining the carbon footprint and emission hotspots for the wine produced in Cyprus. Atmosphere 11(5):463. https://doi.org/10.3390/atmos11050463 [DOI: 10.3390/atmos11050463]
  35. Pena-Portillo G-C, Acuna-Nelson S-M, Bastías-Montes J-M (2024) From waste to wealth: exploring the bioactive potential of wine by-products – a review. Antioxidants 13:992. https://doi.org/10.3390/antiox13080992 [DOI: 10.3390/antiox13080992]
  36. Milea D, Visan A-L, Paun A, Bogdanof CG, Ciuperca R, Paraschiv G (2018) Technological and ecological aspects of some wine waste recycling and their capitalization in food industry. Ann Univ Craiova Agric Montanol Cadastre Ser XLVIII:320–327. https://agro-craiova.ro
  37. Odabasioglu MI (2023) Total oil and fatty acid composition of the seed of 16 grape genotypes with different skin colors and ripening times. J Berry Res 13:325–342. https://doi.org/10.3233/JBR-230024 [DOI: 10.3233/JBR-230024]
  38. Tociu M, Todasca M-C, Stanescu MD, Artem V, Ionescu V (2017) Climate impact on fatty acid content of grape seed oil. UPB Sci Bull Ser B 79(1):3–10. https://www.scientificbulletin.upb.ro/rev_docs_arhiva/rez396_810446.pdf
  39. Masan V, Matwijczuk AP, Niemczynowicz A, Kycia RA, Karcz D, Gładyszewska B, Ślusarczyk L, Burg P (2021) Chemometric approach to characterization of the selected grape seed oils based on their fatty acids composition and FTIR spectroscopy. Sci Rep 11(1):19256. https://doi.org/10.1038/s41598-021-98763-6 [DOI: 10.1038/s41598-021-98763-6]
  40. Garavaglia J, Markoski J, Oliveira MM, Marcadenti A (2016) A grape seed oil compounds: biological and chemical actions for health. Nutr Metab Insights 9:59–64. https://doi.org/10.4137/NMI.S32910 [DOI: 10.4137/NMI.S32910]
  41. Dorni C, Sharma P, Saikia G, Longvah T (2018) Fatty acid profile of edible oils and fats consumed in India. Food Chem 238:9–15. https://doi.org/10.1016/j.foodchem.2017.05.072 [DOI: 10.1016/j.foodchem.2017.05.072]
  42. Tociu M, Hirtopeanu A, Stanescu MD (2021) Enzymatic pre-treatment of grape seeds for an oil with higher antioxidant activity. Grasas y Aceites 72(4):e434. https://doi.org/10.3989/gya.1000202
  43. Maggio RM, Kaufman TS, Del Carlo M, Cerretani L, Bendini A, Cichelli A, Compagnone D (2009) Monitoring of fatty acid composition in virgin olive oil by Fourier transformed infrared spectroscopy coupled with partial least squares. Food Chem 114:1549–1554. https://doi.org/10.1016/j.foodchem.2008.11.029 [DOI: 10.1016/j.foodchem.2008.11.029]
  44. Chambre DR, Tociu M, Stanescu MD, Popescu C (2019) Influence of composition on the thermal behavior of oils extracted from the seeds of some Romanian grapes. J Sci Food Agric 99:6324–6332. https://doi.org/10.1002/jsfa.9909 [DOI: 10.1002/jsfa.9909]
  45. Shahidi F, De Camargo AC (2016) Tocopherols and tocotrienols in common and emerging dietary sources: occurrence, applications, and health benefits. Int J Mol Sci 17:1745. https://doi.org/10.3390/ijms17101745 [DOI: 10.3390/ijms17101745]
  46. Gonçalves MBS, Marques MP, Correia F, Makvandie P, Varela C, Caramori Cefali L, Gava Mazzola P, Veiga F, Cabral C, Mascarenhas-Melo F, Paiva-Santos AC (2024) Wine industry by-products as a source of active ingredients for topical applications. Phytochem Rev. https://doi.org/10.1007/s11101-024-10030-4
  47. Tociu M, Oprea O, Stanescu MD (2019) Preliminary investigations for the valorization of grape seeds after the oil extraction. UPB Sci Bull Ser B 81(2):47–56. https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full828_896673.pdf
  48. Gitea D, Gitea MA, Radu A-F, Pasca MB, Bungau SG, Tit DM (2024) Antioxidant capacity and phenolic profile of defatted seed powder derived from organically grown vine crops. Bull UASMV Food Sci Technol 81(2):48–60. https://doi.org/10.15835/buasvmcn-fst:2024.0009 [DOI: 10.15835/buasvmcn-fst]
  49. Radoeva R, Yankova I, Enchev B, Karsheva M, Ivanova E, Iliev I (2022) Polyphenols of grape pomace from local Bulgarian variety Mavrud. Antioxidant and antitumor effect against breast cancer. J Chem Technol Metall 57(3):508–521. https://rlib.uctm.edu/handle/123456789/1389
  50. de Almeida Hübner A, de Aguiar MMGB, Demarque DP, Rosado C, Velasco MVR, Kikuchi IS, Baby AR, Pessoa FVLS Technological aspects and potential cutaneous application of wine industry by-products. Appl Sci 13:9068. https://doi.org/10.3390/app13169068
  51. Zanini M, Silvestre WP, Baldasso C, Tessaro IC (2024) Valorization of wastes generated in organic grape processing. Braz Arch Biol Technol 67:e24230183. https://doi.org/10.1590/1678-4324-2024230183 [DOI: 10.1590/1678-4324-2024230183]
  52. Tincu R, Todască C, Artem V, Nicoara A-I (2021) Dye removal from wastewaters using grape seed residues. Rev Roum Chim 66(2):185–192. https://doi.org/10.33224/rrch.2021.66.2.09 [DOI: 10.33224/rrch.2021.66.2.09]
  53. Silva A, Silva V, Igrejas G, Gaivão I, Aires A, Klibi N, de Lurdes Enes Dapkevicius M, Valentão P, Falco V, Poeta P (2021) Valorization of winemaking by-products as a novel source of antibacterial properties: new strategies to fight antibiotic resistance. Molecules 26:2331. https://doi.org/10.3390/molecules26082331 [DOI: 10.3390/molecules26082331]
  54. Rodrigues RP, Gando-Ferreira LM, Quina MJ (2022) Increasing value of winery residues through integrated biorefinery processes: a review. Molecules 27:4709. https://doi.org/10.3390/molecules27154709 [DOI: 10.3390/molecules27154709]
  55. Fernández-Fernández AM, Iriondo-DeHond A, Dellacassa E, Medrano-Fernandez A, del Castillo MD (2019) Assessment of antioxidant, antidiabetic, antiobesity, and anti-inflammatory properties of a Tannat winemaking by-product. Eur Food Res Technol 245:1539–1551. https://doi.org/10.1007/s00217-019-03252-w [DOI: 10.1007/s00217-019-03252-w]
  56. Gerardi C, D’amico L, Migoni D, Santino A, Salomone A, Carluccio MA, Giovinazzo G (2020) Strategies for reuse of skins separated from grape pomace as ingredient of functional beverages. Front Bioeng Biotechnol 8:645. https://doi.org/10.3389/fbioe.2020.00645 [DOI: 10.3389/fbioe.2020.00645]
  57. Serea D, Horincar G, Constantin OE, Aprodu I, Stanciuc N, Bahrim GE, Stanciu S, Rapeanu G (2022) Value-added white beer: influence of red grape skin extract on the chemical composition, sensory and antioxidant properties. Sustainability 14:9040. https://doi.org/10.3390/su14159040 [DOI: 10.3390/su14159040]
  58. Carullo G, Spizzirri U, Loizzo M, Leporini M, Sicari V, Aiello F, Restuccia D (2020) Valorization of red grape (Vitis Vinifera Cv. Sangiovese) pomace as functional food ingredient. Ital J Food Sci 32(2):367–385. https://doi.org/10.14674/IJFS-1758 [DOI: 10.14674/IJFS-1758]
  59. Rațu RN, Usturoi MG, Radu-Rusu RM, Veleșcu ID, Lipșa FD, Arsenoaia VN, Postolache AN, Crivei IC, Cârlescu PM (2023) Effect of grape skin powder addition on chemical, nutritional and technological properties of cheese. J Appl Life Sci Environ 56(1):41–58. https://doi.org/10.46909/alse-561084 [DOI: 10.46909/alse-561084]
  60. Gaita C, Alexa E, Moigradean D, Conforti F, Poiana M-A (2020) Designing of high value-added pasta formulas by incorporation of grape pomace skins. Rom Biotechnol Lett 25(3):1607–1614. https://doi.org/10.25083/rbl/25.3/1607.161 [DOI: 10.25083/rbl/25.3/1607.161]
  61. Palazzolo MA, Aballay MM, Martinez AA, Kurina-Sanz M (2022) Grape stalk-based extracts controlling fruit pathogenic fungi as a waste biomass valorization alternative in winemaking. Waste Biomass Valoriz 13:609–616. https://doi.org/10.1007/s12649-021-01533-8 [DOI: 10.1007/s12649-021-01533-8]
  62. Leal C, Gouvinhas I, Santos RA, Rosa E, Silva AM, Saavedra MJ, Barros AIRNA (2020) Potential application of grape (Vitis vinifera L.) stem extracts in the cosmetic and pharmaceutical industries: valorization of a by-product. Ind Crops Prod 154:112675. https://doi.org/10.1016/j.indcrop.2020.112675 [DOI: 10.1016/j.indcrop.2020.112675]
  63. Ioannidou SM, Filippi K, Kookos IK, Koutinas A, Ladakis D (2022) Techno-economic evaluation and life cycle assessment of a biorefinery using winery waste streams for the production of succinic acid and value-added co-products. Bioresour Technol 348:126295. https://doi.org/10.1016/j.biortech.2021.126295 [DOI: 10.1016/j.biortech.2021.126295]
  64. Atatoprak T, Amorim MM, Ribeiro T, Pintado M, Madureira AR (2022) Grape stalk valorization for fermentation purposes. Food Chem Mol Sci 4:100067. https://doi.org/10.1016/j.fochms.2021.100067 [DOI: 10.1016/j.fochms.2021.100067]
  65. Filippi K, Georgaka N, Alexandri M, Papapostolou H, Koutinas A (2021) Valorisation of grape stalks and pomace for the production of bio-based succinic acid by Actinobacillus succinogenes. Ind Crops Prod 168:113578. https://doi.org/10.1016/j.indcrop.2021.113578 [DOI: 10.1016/j.indcrop.2021.113578]
  66. Nanni A, Cancelli U, Montevecchi G, Masino F, Messori M, Antonelli A (2021) Functionalization and use of grape stalks as poly(butylene succinate) (PBS) reinforcing fillers. Waste Manag 126:538–548. https://doi.org/10.1016/j.wasman.2021.03.050 [DOI: 10.1016/j.wasman.2021.03.050]
  67. Elissetche JP, Puentes C, Vidal C, Pereira M, Melin V (2022) Waste biomass of wine industry: a potential application of unbleached fibers produced by green approach. Biomass Convers Biorefinery 12:4971–4978. https://doi.org/10.1007/s13399-020-00981-x [DOI: 10.1007/s13399-020-00981-x]
  68. Gómez-Brandón M, Aira M, Domínguez J (2023) Vermicomposting as an eco-friendly approach for recycling and valorization grape waste. In: Mupambwa HA, Horn LN, Mnkeni PNS (eds) Vermicomposting for sustainable food systems in Africa. Sustainability sciences in Asia and Africa. Springer, Singapore, pp 111–125. https://doi.org/10.1007/978-981-19-8080-0_6 [DOI: 10.1007/978-981-19-8080-0_6]
  69. Nascimento-Goncalves E, Azevedo T, Lopes H, Sousa JR, Oliveira PA, Roboredo M, Coimbra AM, Morais MC (2024) Vermicomposting as a valorization solution to the winery sector by-products. Agronomy 14:1111. https://doi.org/10.3390/agronomy14061111 [DOI: 10.3390/agronomy14061111]
  70. Gómez-Brandón M, Lores M, Domínguez J (2023) Recycling and valorization of distilled grape marc through vermicomposting: a pilot-scale study. J Mater Cycles Waste Manag 25:1509–1518. https://doi.org/10.1007/s10163-023-01627-6 [DOI: 10.1007/s10163-023-01627-6]
  71. Laca A, Gancedo S, Laca A, Díaz M (2021) Assessment of the environmental impacts associated with vineyards and winemaking. A case study in mountain areas. Environ Sci Pollut Res 28(1):1204–1223. https://doi.org/10.1007/s11356-020-10567-9 [DOI: 10.1007/s11356-020-10567-9]
  72. Cortés A, Oliveira LFS, Ferrari V, Taffarel SR, Feijoo G, Moreira MT (2020) Environmental assessment of viticulture waste valorisation through composting as a biofertilisation strategy for cereal and fruit crops. Environ Pollut 264:114794. https://doi.org/10.1016/j.envpol.2020.114794 [DOI: 10.1016/j.envpol.2020.114794]
  73. Padureanu S, Patras A (2022) Biological Response of Triticum aestivum L. to the Abiotic Stress Induced by Winemaking Waste. Agronomy 12:1371. https://doi.org/10.3390/agronomy12061371 [DOI: 10.3390/agronomy12061371]
  74. Muhlack RA, Potumarthi R, Jeffery DW (2018) Sustainable wineries through waste valorisation: a review of grape marc utilisation for value-added products. Waste Manag 72:99–118. https://doi.org/10.1016/j.wasman.2017.11.011 [DOI: 10.1016/j.wasman.2017.11.011]
  75. Radulescu C, Olteanu RL, Buruleanu CL, Nichifor (Tudorache) M, Dulama ID, Stirbescu RM, Bucurica IA, Stanescu SG, Banica AL (2024) Polyphenolic screening and the antioxidant activity of grape pomace extracts of Romanian white and red grape varieties. Antioxidants 13:1133. https://doi.org/10.3390/antiox13091133
  76. Sirohi R, Tarafdar A, Singh S, Negi T, Kumar Gaur V, Gnansounou E, Bhartiraja B (2021) Green processing and biotechnological potential of grape pomace: current trends and opportunities for sustainable biorefinery. Bioresour Technol 314:123771. https://doi.org/10.1016/j.biortech.2020.1237 [DOI: 10.1016/j.biortech.2020.1237]
  77. Chedea VS, Tomoiaga LL, Macovei SO, Magureanu DC, Iliescu ML, Bocsan IC, Buzoianu AD, Vosloban CM, Pop RM Antioxidant/pro-oxidant actions of polyphenols from grapevine and wine by-products-base for complementary therapy in ischemic heart diseases. Front Cardiovasc Med 8:750508. https://doi.org/10.3389/fcvm.2021.750508
  78. Ferreira SM, Santos LA (2022) Potential valorization strategy of wine industry by-products and their application in cosmetics-case study: grape pomace and grapeseed. Molecules 27:969. https://doi.org/10.3390/molecules27030969 [DOI: 10.3390/molecules27030969]
  79. Hoss I, Rajha HN, El Khoury R, Youssef S, Manca ML, Manconi M, Louka N, Maroun RG (2021) Valorization of wine-making by-products’ extracts in cosmetics. Cosmetics 8:109. https://doi.org/10.3390/cosmetics8040109 [DOI: 10.3390/cosmetics8040109]
  80. Baroi AM, Fierascu I, Ghizdareanu A-I, Trica B, Fistos T, Matei RI, Fierascu RC, Firinca C, Sardarescu ID, Avramescu SM (2024) Green approach for synthesis of silver nanoparticles with antimicrobial and antioxidant properties from grapevine waste extracts. Int J Mol Sci 25:4212. https://doi.org/10.3390/ijms25084212 [DOI: 10.3390/ijms25084212]
  81. Abduraman A, Brezoiu A-M, Tatia R, Iorgu A-I, Deaconu M, Mitran R-A, Matei C, Berger D (2024) Mesoporous titania nanoparticles for a high-end valorization of Vitis vinifera grape marc extracts. Inorganics 12:263. https://doi.org/10.3390/inorganics12100263 [DOI: 10.3390/inorganics12100263]
  82. David G, Vannini M, Sisti L, Marchese P, Celli A, Gontard N, Angellier-Coussy H (2020) Eco-conversion of two winery lignocellulosic wastes into fillers for biocomposites: vine shoots and wine pomaces. Polymers 12:1530. https://doi.org/10.3390/polym12071530 [DOI: 10.3390/polym12071530]
  83. Biagi F, Giubilini A, Veronesi P, Nigro G, Messori M (2024) Valorization of winery by-products as bio-fillers for biopolymer-based composites. Polymers 16:1344. https://doi.org/10.3390/polym16101344 [DOI: 10.3390/polym16101344]
  84. Sette P, Fernandez A, Soria J, Rodriguez R, Salvatori D, Mazza G (2020) Integral valorization of fruit waste from wine and cider industries. J Clean Prod 242:118486. https://doi.org/10.1016/j.jclepro.2019.118486 [DOI: 10.1016/j.jclepro.2019.118486]
  85. Iuga M, Mironeasa S (2020) Potential of grape byproducts as functional ingredients in baked goods and pasta. Compr Rev Food Sci Food Saf 19(5):2473–2505. https://doi.org/10.1111/1541-4337.12597 [DOI: 10.1111/1541-4337.12597]
  86. Erşova S, Suhovici D, Cesko T, Barbaroș M-M, Popescu L, Ghendov-Mosanu A (2024) Possibilities of obtaining and valorizing dietary fibers in the context of the circular bioeconomy. J Eng Sci 31(1):75–96. https://doi.org/10.52326/jes.utm.2024.31(1).07 [DOI: 10.52326/jes.utm.2024.31(1).07]
  87. Ferrer-Gallego R, Silva P (2022) The wine industry by-products: applications for food industry and health benefits. Antioxidants 11:2025. https://doi.org/10.3390/antiox11102025 [DOI: 10.3390/antiox11102025]
  88. Antonić B, Jančíková S, Dordević D, Tremlová B (2020) Grape pomace valorization: a systematic review and meta-analysis. Foods 9:1627. https://doi.org/10.3390/foods9111627 [DOI: 10.3390/foods9111627]
  89. Olt V, Báez J, Curbelo R, Boido E, Amarillo M, Gámbaro A, Alborés S, Gerez García N, Cesio MV, Heinzen H, Dellacassa E, Fernández-Fernández AM, Medrano A (2023) Tannat grape pomace as an ingredient for potential functional biscuits: bioactive compound identification, in vitro bioactivity, food safety, and sensory evaluation. Front Nutr 10:1241105. https://doi.org/10.3389/fnut.2023.1241105 [DOI: 10.3389/fnut.2023.1241105]
  90. Oliveira BE, Contini L, dos Santos Garcia VA, Pinhero de Lima Cilli L, Galvao Leite Chagas E, Andreo MA, Vanin FM, Carvalho RA, Sinnecker P, Venturini AC, Pedroso Yoshida CM (2023) Valorization of grape by-products as functional and nutritional ingredients for healthy pasta development. J Food Process Preserv 42(12):e17245. https://doi.org/10.1111/jfpp.17245 [DOI: 10.1111/jfpp.17245]
  91. Frum A, Dobrea CM, Rus LL, Virchea L-I, Morgovan C, Chis AA, Arseniu AM, Butuca A, Gligor FG, Vicas LG, Tita O, Georgescu C (2022) Valorization of grape pomace and berries as a new and sustainable dietary supplement: development, characterization, and antioxidant activity testing. Nutrients 14:3065. https://doi.org/10.3390/nu14153065 [DOI: 10.3390/nu14153065]
  92. Giamouri E, Mavrommatis A, Simitzis PE, Mitsiopoulou C, Haroutounian SA, Koutinas A, Pappas AC, Tsiplakou E (2022) Redefining the use of vinification waste by-products in broiler diets. Sustainability 14:15714. https://doi.org/10.3390/su142315714 [DOI: 10.3390/su142315714]
  93. Barbacariu C-A, Dirvariu L, Serban DA, Rimbu CM, Horhogea CE, Dumitru G, Todirascu-Ciornea E, Lungoci C, Burducea M (2024) Evaluating the use of grape pomace in Cyprinus carpio nutrition: effects on growth, biochemistry, meat quality, microbiota, and oxidative status. Aust Fish 9:219. https://doi.org/10.3390/fishes9060219
  94. Bran PE, Nicuţă D, Grosu L, Patriciu O-I, Alexa I-C (2022) Investigation regarding the potential application of grape pomace extracts on in vitro plant growth and development. Ovidius Univ Ann Chem 33(2):135–142. https://doi.org/10.2478/auoc-2022-0020 [DOI: 10.2478/auoc-2022-0020]
  95. Soceanu A, Dobrinas S, Sirbu A, Manea N, Popescu V (2021) Economic aspects of waste recovery in the wine industry. A multidisciplinary approach. Sci Total Environ 759:143543. https://doi.org/10.1016/j.scitotenv.2020.143543 [DOI: 10.1016/j.scitotenv.2020.143543]
  96. Fonseca FD, Symochko L, Pinheiro MNC (2024) Grape pomace (Vitis vinifera L.) waste valorization: assessing its potential as a sustainable natural dye for textiles applications. Sustainability 16:3167. https://doi.org/10.3390/su16083167 [DOI: 10.3390/su16083167]
  97. Regulation (EC) No 479/2008 Council Regulation (EC) No 479/2008 of 29 Apr 2008 on the common organisation of the market in wine. https://eur-lex.europa.eu/legal-content/EL/TXT/PDF/?uri=CELEX:32008R0479
  98. De Iseppi A, Marangon M, Vincenzi S, Lomolino G, Curioni A, Divol B (2021) A novel approach for the valorization of wine lees as a source of compounds able to modify wine properties. LWT 136:110274. https://doi.org/10.1016/j.lwt.2020.110274 [DOI: 10.1016/j.lwt.2020.110274]
  99. Filippi K, Papapostolou H, Alexandri M, Vlysidis A, Myrtsi ED, Ladakis D, Pateraki C, Haroutounian SA, Koutinas A (2022) Integrated biorefinery development using winery waste streams for the production of bacterial cellulose, succinic acid and value-added fractions. Bioresour Technol 343:125989. https://doi.org/10.1016/j.biortech.2021.125989 [DOI: 10.1016/j.biortech.2021.125989]
  100. Felix M, Martínez I, Sayago A, Fernández Recamales Á (2021) Wine lees: from waste to O/W emulsion stabilizer. Innov Food Sci Emerg Technol 74:102810. https://doi.org/10.1016/j.ifset.2021.102810 [DOI: 10.1016/j.ifset.2021.102810]
  101. Kokkinomagoulos E, Stamkopoulos A, Michaelidou A-M, Goula AM, Kandylis P (2024) Valorization of the solid fraction of wine lees through optimized accelerated autolysis: effect of temperature, pH and solid concentration on free-amino acid concentration. Sustain Chem Pharm 42:101780. https://doi.org/10.1016/j.scp.2024.101780 [DOI: 10.1016/j.scp.2024.101780]
  102. Barbanera M, Cardarelli A, Carota E, Castellini M, Giannoni T, Ubertini S (2021) Valorization of winery and distillery by-products by hydrothermal carbonization. Sci Rep 11:23973. https://doi.org/10.1038/s41598-021-03501-7 [DOI: 10.1038/s41598-021-03501-7]
  103. Garrido RA, Manrique R, Fredes J, Rodriguez P, Rodríguez A, Serafini D, Mena M, Masip Y, Díaz I (2024) Evaluating hydrogen production from grape pomace gasification: unveiling the potential for Chile’s wine industry and its solid waste recovery as energy source. Renew Energy 223:119953. https://doi.org/10.1016/j.renene.2024.119953 [DOI: 10.1016/j.renene.2024.119953]
  104. Hungría J, Siles JA, Chica AF, Gil A, Martín MA (2021) Anaerobic codigestion of winery waste: comparative assessment of grape marc waste and lees derived from organic crops. Environ Technol 42(23):3618–3626. :. https://doi.org/10.1080/09593330.2020.1737735 [DOI: 10.1080/09593330.2020.1737735]
  105. Donoso D, Bolonio D, Lapuerta M, Canoira L (2020) Oxidation stability: the bottleneck for the development of a fully renewable biofuel from wine industry waste. ACS Omega 5(27):16645–16653. https://doi.org/10.1021/acsomega.0c01496 [DOI: 10.1021/acsomega.0c01496]
  106. Musteață G, Balanuță A, Filimon R, Băetu M (2021) Capitalization of secondary wine products-an opportunity for the wine sector of republic Moldova and Romania. J Soc Sci 4(2):117–127. https://doi.org/10.52326/jss.utm.2021.4(2).12 [DOI: 10.52326/jss.utm.2021.4(2).12]
  107. Chioru A, Chiselita N, Suhodol N, Boiştean A, Paladi D, Capcanari T, Chirsanova A (2023) Physico-chemical and microbiological profile of wine lees of red wines from local lrapes varieties. Food Nutrition Sci 14:1133–1148. https://doi.org/10.4236/fns.2023.1411071

Word Cloud

Created with Highcharts 10.0.0wineEuropeanproductionproductsgrapeindustryimportantglobalbiowastevinificationvalorizationsolutionsvalueeconomicaspectsrepresenting60%AccordingCommissiontotalannual2013-2020countriesreachedvolume165millionhLEuropealsoexporteroccupyingaround70%marketparallelproduceslargequantitycontextsustainableeconomyneedsvalorizedorderprotectenvironmentlandfillingavoideddueaciditypossiblegenerationhazardousdecompositionhandresiduescontainvaluablecompoundslike:oilspolyphenolstocopherolsorganicelementscarbonnitrogenmakingby-productscompulsoryEcologicalseedsskinsstemswellleesresultingfoundDifferentprocessingbiowastesgenerateaddeddescribedunderlinedBiowasteValorization:WineIndustryCaseAddedEnvironmentalRenewableenergyWinemakingwaste

Similar Articles

Cited By

No available data.