A frameshift variant in the SLC6A5 gene is associated with startle disease in a family of Old English Sheepdogs.
Fr��derique Boeykens, Michelle Hermans, Laura Adant, Bert De Jonge, Koen Chiers, Kenny Bossens, Bart J G Broeckx
Author Information
Fr��derique Boeykens: Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium. ORCID
Michelle Hermans: Nesto Veterinary Referral Center Orion, Herentals, Belgium.
Laura Adant: Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
Bert De Jonge: Laboratory of Pathology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
Koen Chiers: Laboratory of Pathology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
Kenny Bossens: Nesto Veterinary Referral Center Orion, Herentals, Belgium.
Bart J G Broeckx: Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
A 2-week-old litter of three Old English Sheepdog puppies presented with episodic generalised muscle hypertonia and cyanosis triggered by touch and noise. Owing to poor response to therapy and progression of symptoms, the puppies were euthanised. Post-mortem histology revealed perineuronal incrustations in the spinal cord, suggestive of ischemia or neuronal necrosis. Clinical symptoms, combined with necropsy and histopathology findings, led to a suspicion of startle disease, prompting a referral to a specialised clinical genetics centre. Whole exome sequencing (WES) of the nuclear family identified a homozygous truncating variant in the SLC6A5 gene in affected individuals, with both unaffected parents being heterozygous. Additional population screening found three phenotypically unaffected carriers, indicating that the variant segregates within the Old English Sheepdog breed. This raises concerns about the management of carriers and their breeding contributions if not properly guided by DNA testing. This study addresses a frameshift variant SLC6A5:c.1322del found in Old English Sheepdogs. Next to this, the value of genetic counselling and clinical genetics services in breeding programmes is highlighted to identify carriers and guide informed breeding decisions. Finally, the findings demonstrate the utility of WES in veterinary diagnostics and provide practical insights for breeders, veterinarians and geneticists to improve the health and welfare of Old English Sheepdogs.
Adant, L., Szymczak, V., Bhatti, S.F.M., Smets, P., Saunders, J., Peelman, L. et al. (2025) Genetic counseling in veterinary medicine: towards an evidence���based definition for the small animal practice. BMC Veterinary Research, 21, 89.
Ahrens���Nicklas, R.C., Umanah, G.K.E., Sondheimer, N., Deardorff, M.A., Wilkens, A.B., Conlin, L.K. et al. (2017) Precision therapy for a new disorder of AMPA receptor recycling due to mutations in ATAD1. Neurology: Genetics, 3, 1���9.
Bakker, M.J., Peeters, E.A.J. & Tijssen, M.A.J. (2009) Clonazepam is an effective treatment for hyperekplexia due to a SLC6A5 (GlyT2) mutation. Movement Disorders, 24, 1852���1854.
Bhalerao, D.P., Rajpurohit, Y., Vite, C.H. & Giger, U. (2002) Detection of a genetic mutation for myotonia congenita among miniature schnauzers and identification of a common carrier ancestor. American Journal of Veterinary Research, 63, 1443���1447.
Boeykens, F., Abitbol, M., Anderson, H., Casselman, I., Dufaure de Citres, C., Hayward, J.J. et al. (2024) Variant classification guidelines for animals to objectively evaluate genetic variant pathogenicity. bioRxiv. https://doi.org/10.1101/2024.09.17.613537
Boeykens, F., Abitbol, M., Anderson, H., Dargar, T., Ferrari, P., Fox, P.R. et al. (2024) Classification of feline hypertrophic cardiomyopathy���associated gene variants according to the American College of Medical Genetics and Genomics guidelines. Frontiers in Veterinary Science, 11, 1327081.
Boeykens, F., Bhatti, S.F.M., Peelman, L. & Broeckx, B.J.G. (2023) VariantscanR: an R���package as a clinical tool for variant filtering of known phenotype���associated variants in domestic animals. BMC Bioinformatics, 24, 305.
Broeckx, B.J.G. (2020) The dog 2.0: lessons learned from the past. Theriogenology, 150, 20���26.
Broeckx, B.J.G., Hitte, C., Coopman, F., Verhoeven, G.E.C., De Keulenaer, S., De Meester, E. et al. (2015) Improved canine exome designs, featuring ncRNAs and increased coverage of protein coding genes. Scientific Reports, 5, 1���10.
Broeckx, S.Y., Borena, B.M., Van Hecke, L., Chiers, K., Maes, S., Guest, D.J. et al. (2015) Comparison of autologous versus allogeneic epithelial���like stem cell treatment in an in vivo equine skin wound model. Cytotherapy, 17, 1434���1446.
Brown, A.W. (1977) Structural abnormalities in neurones. Journal of Clinical Pathology. Supplement (Royal College of Pathologists), 11, 155���169.
Bunod, R., Doummar, D., Whalen, S., Keren, B., Chantot���Bastaraud, S., Maincent, K. et al. (2020) Congenital immobility and stiffness related to biallelic ATAD1 variants. Neurology: Genetics, 6, e520.
Calboli, F.C.F., Sampson, J., Fretwell, N. & Balding, D.J. (2008) Population structure and inbreeding from pedigree analysis of purebred dogs. Genetics, 179, 593���601.
Charlier, C., Coppieters, W., Rollin, F., Desmecht, D., Agerholm, J.S., Cambisano, N. et al. (2008) Highly effective SNP���based association mapping and management of recessive defects in livestock. Nature Genetics, 40, 449���454.
Chimenes, N.D., Caramalac, S.M., Caramalac, S.M., Fernandes, T.D., Basso, R.M., Cerri, F.M. et al. (2023) A complex CLCN1 variant associated with hereditary myotonia in a mixed���breed dog. Journal of Veterinary Diagnostic Investigation, 35, 413���416.
Dolu, M.H., ��z Tun��er, G., Ak��a, ��., Ayd��n, S., Bahadir, O., Sezer, ��. et al. (2024) Hyperekplexia: a single���center experience. Journal of Child Neurology, 39, 260���267.
Eulenburg, V., Becker, K., Gomeza, J., Schmitt, B., Becker, C.M. & Betz, H. (2006) Mutations within the human GLYT2 (SLC6A5) gene associated with hyperekplexia. Biochemical and Biophysical Research Communications, 348, 400���405.
Farrell, L.L., Schoenebeck, J.J., Wiener, P., Clements, D.N. & Summers, K.M. (2015) The challenges of pedigree dog health: approaches to combating inherited disease. Canine Genetics and Epidemiology, 2, 1���14.
Fox, J.G., Averill, D.R., Hallett, M. & Schunk, K. (1984) Familial reflex myoclonus in Labrador Retrievers. American Journal of Veterinary Research, 45, 2367���2370.
Gill, J.L., Capper, D., Vanbellinghen, J.F., Chung, S.K., Higgins, R.J., Rees, M.I. et al. (2011) Startle disease in Irish wolfhounds associated with a microdeletion in the glycine transporter GlyT2 gene. Neurobiology of Disease, 43, 184���189.
Gomeza, J., Ohno, K., H��lsmann, S., Armsen, W., Eulenburg, V., Richter, D.W. et al. (2003) Deletion of the mouse glycine transporter 2 results in a hyperekplexia phenotype and postnatal lethality. Neuron, 40, 797���806.
Gracis, M., Keith, D. & Vite, C.H. (2000) Dental and craniofacial findings in eight miniature schnauzer dogs affected by myotonia congenita: preliminary results. Journal of Veterinary Dentistry, 17, 119���127.
Gundlach, A.L. (1990) Disorder of the inhibitory glycine receptor: inherited myoclonus in poll Hereford calves. The FASEB Journal, 4, 2761���2766.
Gundlach, A.L., Dodd, P.R., Grabara, C.S.G., Wendy, E.J., Johnston, G.A.R., Harper, P.A.W. et al. (1988) Deficit of spinal cord glycine/strychnine receptors in inherited myoclonus of poll Hereford calves. Science, 241, 1807���1810.
Gundlach, A.L., Dodd, P.R., Grabara, C.S.G., Wendy, E.J., Johnston, G.A.R., Harper, P.A.W. et al. (1993) Deficit of inhibitory glycine receptors in spinal cord from Peruvian Pasos: evidence for an equine form of inherited myoclonus. Brain Research, 628, 263���270.
Harper, P.A.W., Healy, P.J. & Dennis, J.A. (1986) Inherited congenital myoclonus of polled Hereford calves (so���called neuraxial oedema): a clinical, pathological and biochemical study. The Veterinary Record, 119, 59���62.
Harvey, R.J., Topf, M., Harvey, K. & Rees, M.I. (2008) The genetics of hyperekplexia: more than startle! Trends in Genetics, 24, 439���447.
Heinonen, T., Flegel, T., M��ller, H., Kehl, A., Hundi, S., Matiasek, K. et al. (2023) A loss���of���function variant in canine GLRA1 associates with a neurological disorder resembling human hyperekplexia. Human Genetics, 142, 1221���1230.
Kitzman, P. (2007) VGLUT1 and GLYT2 labeling of sacrocaudal motoneurons in the spinal cord injured spastic rat. Experimental Neurology, 204, 195���204.
Landrum, M.J., Lee, J.M., Riley, G.R., Jang, W., Rubinstein, W.S., Church, D.M. et al. (2014) ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Research, 42, 980���985.
Lim, T.T., Por, C.Y., Beh, Y.Y., Schee, J.P. & Tan, A.H. (2023) Treatment of startle and related disorders. Clinical Parkinsonism & Related Disorders, 9, 100218.
Lobetti, R.G. (2009) Myotonia congenita in a Jack Russell terrier. Journal of the South African Veterinary Association, 80, 106���107.
L��pez���Corcuera, B., Arribas���Gonz��lez, E. & Arag��n, C. (2019) Hyperekplexia���associated mutations in the neuronal glycine transporter 2. Neurochemistry International, 123, 95���100.
Martin, F.J., Amode, M.R., Aneja, A., Austine���Orimoloye, O., Azov, A.G., Barnes, I. et al. (2023) Ensembl 2023. Nucleic Acids Research, 51(D1), D933���D941.
McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R.S., Thormann, A. et al. (2016) The Ensembl variant effect predictor. Genome Biology, 17, 1���14.
Moses, L., Niemi, S. & Karlsson, E. (2018) Pet genomics medicine runs wild. Nature, 559, 470���472.
Murphy, S.C., Recio, A., de la Fuente, C., Guo, L.T., Shelton, G.D. & Clark, L.A. (2019) A glycine transporter SLC6A5 frameshift mutation causes startle disease in Spanish greyhounds. Human Genetics, 138, 509���513.
Parker, H.G., Dreger, D.L., Rimbault, M., Davis, B.W., Mullen, A.B., Carpintero���Ramirez, G. et al. (2017) Genomic analyses reveal the influence of geographic origin, migration, and hybridization on modern dog breed development. Cell Reports, 19, 697���708.
Pierce, K.D., Handford, C.A., Morris, R., Vafa, B., Dennis, J.A., Healy, P.J. et al. (2001) A nonsense mutation in the ��1 subunit of the inhibitory glycine receptor associated with bovine myoclonus. Molecular and Cellular Neurosciences, 17, 354���363.
Quitt, P.R., Hyt��nen, M.K., Matiasek, K., Rosati, M., Fischer, A. & Lohi, H. (2018) Myotonia congenita in a Labrador Retriever with truncated CLCN1. Neuromuscular Disorders, 28, 597���605.
Rees, M.I., Harvey, K., Pearce, B.R., Chung, S.K., Duguid, I.C., Thomas, P. et al. (2006) Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease. Nature Genetics, 38, 801���806.
Rees, M.I., Harvey, K., Ward, H., White, J.H., Evans, L., Duguid, I.C. et al. (2003) Isoform heterogeneity of the human gephyrin gene (GPHN), binding domains to the glycine receptor, and mutation analysis in hyperekplexia. The Journal of Biological Chemistry, 278, 24688���24696.
Rees, M.I., Lewis, T.M., Kwok, J.B.J., Mortier, G.R., Govaert, P., Snell, R.G. et al. (2002) Hyperekplexia associated with compound heterozygote mutations in the �����subunit of the human inhibitory glycine receptor (GLRB). Human Molecular Genetics, 11, 853���860.
Rodrigues, D.d.J., Damasceno, A.D., de Ara��jo, C.E.T., Torelli, S.R., Fonseca, L.G.H., Delfiol, D.J.Z. et al. (2020) Hereditary myotonia in American bulldog associated with a novel frameshift mutation in the CLCN1 gene. Neuromuscular Disorders, 30, 991���998.
Schaefer, N., Harvey, R.J. & Villmann, C. (2022) Startle disease: new molecular insights into an old neurological disorder. The Neuroscientist, 29(6), 767���781. Available from: https://doi.org/10.1177/10738584221104724
Shiang, R., Ryan, S.G., Zhu, Y.���Z., Hahn, A.F., O'Connell, P. & Wasmuth, J.J. (1993) Mutations in the alpha 1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nature Genetics, 5, 351���358.
Shimojima, K., Sugawara, M., Shichiji, M., Mukaida, S., Takayama, R., Imai, K. et al. (2011) Loss���of���function mutation of collybistin is responsible for X���linked mental retardation associated with epilepsy. Journal of Human Genetics, 56, 561���565.
Suhren, O., Bruyn, G.W. & Tuynman, J.A. (1966) Hyperexplexia: A hereditary startle syndrome. Journal of the Neurological Sciences, 3(6), 577���605.
Tijssen, M.A.J., Vergouwe, M.N., Van Dijk, J.G., Rees, M., Frants, R.R. & Brown, P. (2002) Major and minor form of hereditary hyperekplexia. Movement Disorders, 17, 826���830.
Van Poucke, M., Vandesompele, J., Mattheeuws, M., Van Zeveren, A. & Peelman, L.J. (2005) A dual fluorescent multiprobe assay for prion protein genotyping in sheep. BMC Infectious Diseases, 5, 1���8.
Wijnrocx, K., Fran��ois, L., Stinckens, A., Janssens, S. & Buys, N. (2016) Half of 23 Belgian dog breeds has a compromised genetic diversity, as revealed by genealogical and molecular data analysis. Journal of Animal Breeding and Genetics, 133, 375���383.
Zhou, L., Chillag, K.L. & Nigro, M.A. (2002) Hyperekplexia: a treatable neurogenetic disease. Brain & Development, 24, 669���674.