Osmoprotection of Escherichia coli by peptone is mediated by the uptake and accumulation of free proline but not of proline-containing peptides.

M R Amezaga, I R Booth
Author Information
  1. M R Amezaga: Department of Molecular and Cell Biology, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Scotland, United Kingdom. mmb078@abdn.ac.uk

Abstract

The effect of meat peptone type I (Sigma) on the growth of Escherichia coli cells under hyperosmotic stress has been investigated. Peptone is a complex mixture of peptides with a small content of free amino acids, which resembles nutrients found in natural environments. Our data showed that peptone enhances the growth of E. coli cells in high-osmolarity medium to levels higher than those achieved with the main compatible solute in bacteria, glycine betaine. The mechanism of osmoprotection by peptone comprises the uptake and accumulation of the compatible solute, proline. The main role of the peptides contained in peptone is the provision of nutrients rather than the intracellular accumulation of osmolytes. In contrast to Listeria monocytogenes (M. R. Amezaga, I. Davidson, D. McLaggan, A. Verheul, T. Abee, and I. R. Booth, Microbiology 141:41-49, 1995), E. coli does not accumulate exogenous peptides for osmoprotection and peptides containing proline do not lead to the accumulation of proline as a compatible solute. In late-logarithmic-phase cultures of E. coli growing at high osmolarity plus peptone, proline becomes the limiting factor for growth, and the intracellular pools of proline are not maintained. This is a consequence of the low concentration of free proline in peptone, the catabolism of proline by E. coli, and the inability of E. coli to utilize proline-containing peptides as a source of compatible solutes. Our data highlight the role that natural components in food such as peptides play in undermining food preservation regimes, such as high osmolarity, and also that the specific mechanisms of osmoprotection by these compounds differ according to the organism.

References

  1. J Bacteriol. 1989 Sep;171(9):4714-7 [PMID: 2768187]
  2. J Bacteriol. 1991 Jan;173(2):783-90 [PMID: 1987164]
  3. Appl Environ Microbiol. 1995 Jan;61(1):226-33 [PMID: 7887604]
  4. Can J Microbiol. 1989 Aug;35(8):779-85 [PMID: 2684374]
  5. J Bacteriol. 1978 Jan;133(1):139-48 [PMID: 22535]
  6. Microbiology (Reading). 1995 Jan;141 ( Pt 1):41-9 [PMID: 7894718]
  7. Appl Environ Microbiol. 1998 Mar;64(3):1059-65 [PMID: 9501445]
  8. J Bacteriol. 1978 Feb;133(2):744-54 [PMID: 342507]
  9. J Bacteriol. 1990 Jul;172(7):3631-6 [PMID: 1972940]
  10. J Gen Microbiol. 1987 Jul;133(7):1851-60 [PMID: 3312483]
  11. J Bacteriol. 1978 Feb;133(2):737-43 [PMID: 342506]
  12. J Bacteriol. 1970 Jul;103(1):144-52 [PMID: 4912518]
  13. Arch Microbiol. 1987 Feb;147(1):1-7 [PMID: 2883950]
  14. J Bacteriol. 1993 Apr;175(8):2400-6 [PMID: 8468298]
  15. J Bacteriol. 1986 Mar;165(3):849-55 [PMID: 3512525]
  16. Arch Microbiol. 1988;150(4):348-57 [PMID: 3060036]
  17. Adv Microb Physiol. 1983;24:301-66 [PMID: 6364728]
  18. Annu Rev Microbiol. 1996;50:101-36 [PMID: 8905077]
  19. Adv Microb Physiol. 1995;37:272-328 [PMID: 8540423]
  20. Appl Environ Microbiol. 1993 Feb;59(2):473-8 [PMID: 8434912]
  21. J Bacteriol. 1983 May;154(2):561-8 [PMID: 6302076]
  22. Microbiol Rev. 1989 Mar;53(1):121-47 [PMID: 2651863]
  23. Soc Appl Bacteriol Symp Ser. 1988;17:35S-49S [PMID: 3142052]
  24. Mol Gen Genet. 1990 Feb;220(3):492-4 [PMID: 2187156]
  25. J Biol Chem. 1981 Sep 25;256(18):9755-61 [PMID: 6270100]

Grants

  1. /Wellcome Trust

MeSH Term

Amino Acids
Biological Transport
Escherichia coli
Genotype
Kinetics
Listeria monocytogenes
Osmolar Concentration
Peptides
Peptones
Proline

Chemicals

Amino Acids
Peptides
Peptones
Proline

Word Cloud

Created with Highcharts 10.0.0prolinepeptonecolipeptidesEcompatibleaccumulationgrowthfreesoluteosmoprotectionEscherichiacellsnutrientsnaturaldatamainuptakeroleintracellularRhighosmolarityproline-containingfoodeffectmeattypeSigmahyperosmoticstressinvestigatedPeptonecomplexmixturesmallcontentaminoacidsresemblesfoundenvironmentsshowedenhanceshigh-osmolaritymediumlevelshigherachievedbacteriaglycinebetainemechanismcomprisescontainedprovisionratherosmolytescontrastListeriamonocytogenesMAmezagaDavidsonDMcLagganVerheulTAbeeBoothMicrobiology141:41-491995accumulateexogenouscontainingleadlate-logarithmic-phaseculturesgrowingplusbecomeslimitingfactorpoolsmaintainedconsequencelowconcentrationcatabolisminabilityutilizesourcesoluteshighlightcomponentsplayunderminingpreservationregimesalsospecificmechanismscompoundsdifferaccordingorganismOsmoprotectionmediated

Similar Articles

Cited By (3)