Composite generalized Langevin equation for Brownian motion in different hydrodynamic and adhesion regimes.

Hsiu-Yu Yu, David M Eckmann, Portonovo S Ayyaswamy, Ravi Radhakrishnan
Author Information
  1. Hsiu-Yu Yu: Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
  2. David M Eckmann: Department of Anesthesiology and Critical Care and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
  3. Portonovo S Ayyaswamy: Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
  4. Ravi Radhakrishnan: Department of Bioengineering and Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Abstract

We present a composite generalized Langevin equation as a unified framework for bridging the hydrodynamic, Brownian, and adhesive spring forces associated with a nanoparticle at different positions from a wall, namely, a bulklike regime, a near-wall regime, and a lubrication regime. The particle velocity autocorrelation function dictates the dynamical interplay between the aforementioned forces, and our proposed methodology successfully captures the well-known hydrodynamic long-time tail with context-dependent scaling exponents and oscillatory behavior due to the binding interaction. Employing the reactive flux formalism, we analyze the effect of hydrodynamic variables on the particle trajectory and characterize the transient kinetics of a particle crossing a predefined milestone. The results suggest that both wall-hydrodynamic interactions and adhesion strength impact the particle kinetics.

References

  1. Nat Nanotechnol. 2007 Dec;2(12):751-60 [PMID: 18654426]
  2. Nature. 2003 Nov 27;426(6965):421-4 [PMID: 14647376]
  3. Phys Rev Lett. 2008 Jun 20;100(24):240604 [PMID: 18643565]
  4. J Chem Phys. 2011 Sep 21;135(11):114104 [PMID: 21950847]
  5. Anal Chem. 2011 Aug 15;83(16):6349-54 [PMID: 21718053]
  6. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Dec;76(6 Pt 1):061404 [PMID: 18233847]
  7. J Phys Chem B. 2005 Nov 17;109(45):21406-12 [PMID: 16853777]
  8. Science. 2012 Nov 16;338(6109):903-10 [PMID: 23161990]
  9. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011123 [PMID: 17677426]
  10. Phys Rev Lett. 2003 Mar 14;90(10):108301 [PMID: 12689039]
  11. Chem Commun (Camb). 2007 Mar 28;(12):1218-20 [PMID: 17356761]
  12. Annu Rev Biophys. 2009;38:301-26 [PMID: 19416071]
  13. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 1):031402 [PMID: 17025630]
  14. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 1):031402 [PMID: 19391939]
  15. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14524-9 [PMID: 20679245]
  16. Nat Biotechnol. 2005 Jan;23(1):83-7 [PMID: 15608628]
  17. Phys Rev Fluids. 2016;1: [PMID: 27830213]
  18. Biomed Microdevices. 2011 Feb;13(1):97-105 [PMID: 20865451]
  19. Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16530-5 [PMID: 20823256]
  20. Lab Chip. 2005 Aug;5(8):805-11 [PMID: 16027930]
  21. Mol Phys. 2012;110(11-12):1057-1067 [PMID: 22865935]
  22. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 1):041119 [PMID: 20481689]
  23. J Comput Phys. 2013 Jul 1;244:252-263 [PMID: 23853388]
  24. Nat Biotechnol. 1999 Oct;17(10):1030-2 [PMID: 10504710]
  25. J Chem Phys. 2013 May 14;138(18):184905 [PMID: 23676072]
  26. J Nanotechnol Eng Med. 2013 Feb;4(1):101011-1010115 [PMID: 23917383]
  27. Phys Fluids (1994). 2011 Jul;23(7):73602-7360215 [PMID: 21918592]

Grants

  1. R01 EB006818/NIBIB NIH HHS
  2. U01 EB016027/NIBIB NIH HHS

MeSH Term

Adhesiveness
Hydrodynamics
Kinetics
Models, Theoretical
Motion
Nanoparticles
Stochastic Processes

Word Cloud

Created with Highcharts 10.0.0hydrodynamicparticleregimegeneralizedLangevinequationBrownianforcesdifferentkineticsadhesionpresentcompositeunifiedframeworkbridgingadhesivespringassociatednanoparticlepositionswallnamelybulklikenear-walllubricationvelocityautocorrelationfunctiondictatesdynamicalinterplayaforementionedproposedmethodologysuccessfullycaptureswell-knownlong-timetailcontext-dependentscalingexponentsoscillatorybehaviorduebindinginteractionEmployingreactivefluxformalismanalyzeeffectvariablestrajectorycharacterizetransientcrossingpredefinedmilestoneresultssuggestwall-hydrodynamicinteractionsstrengthimpactCompositemotionregimes

Similar Articles

Cited By (9)