De novo hybrid assembly of the rubber tree genome reveals evidence of paleotetraploidy in Hevea species.

Wirulda Pootakham, Chutima Sonthirod, Chaiwat Naktang, Panthita Ruang-Areerate, Thippawan Yoocha, Duangjai Sangsrakru, Kanikar Theerawattanasuk, Ratchanee Rattanawong, Napawan Lekawipat, Sithichoke Tangphatsornruang
Author Information
  1. Wirulda Pootakham: National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand.
  2. Chutima Sonthirod: National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand.
  3. Chaiwat Naktang: National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand.
  4. Panthita Ruang-Areerate: National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand.
  5. Thippawan Yoocha: National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand.
  6. Duangjai Sangsrakru: National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand.
  7. Kanikar Theerawattanasuk: Rubber Authority of Thailand, Bang Khun Non, Bangkok, Thailand.
  8. Ratchanee Rattanawong: Rubber Authority of Thailand, Bang Khun Non, Bangkok, Thailand.
  9. Napawan Lekawipat: Rubber Authority of Thailand, Bang Khun Non, Bangkok, Thailand.
  10. Sithichoke Tangphatsornruang: National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand.

Abstract

Para rubber tree (Hevea brasiliensis) is an important economic species as it is the sole commercial producer of high-quality natural rubber. Here, we report a de novo hybrid assembly of BPM24 accession, which exhibits resistance to major fungal pathogens in Southeast Asia. Deep-coverage 454/Illumina short-read and Pacific Biosciences (PacBio) long-read sequence data were acquired to generate a preliminary draft, which was subsequently scaffolded using a long-range "Chicago" technique to obtain a final assembly of 1.26 Gb (N50 = 96.8 kb). The assembled genome contains 69.2% repetitive sequences and has a GC content of 34.31%. Using a high-density SNP-based genetic map, we were able to anchor 28.9% of the genome assembly (363 Mb) associated with over two thirds of the predicted protein-coding genes into rubber tree's 18 linkage groups. These genetically anchored sequences allowed comparative analyses of the intragenomic homeologous synteny, providing the first concrete evidence to demonstrate the presence of paleotetraploidy in Hevea species. Additionally, the degree of macrosynteny conservation observed between rubber tree and cassava strongly supports the hypothesis that the paleotetraploidization event took place prior to the divergence of the Hevea and Manihot species.

References

  1. Nat Genet. 2002 Jan;30(1):13-9 pubmed:11753382
  2. DNA Res. 2014 Dec;21(6):649-60 pubmed:25233906
  3. Nucleic Acids Res. 2015 Jan;43(Database issue):D130-7 pubmed:25392425
  4. BMC Plant Biol. 2014 Dec 02;14:341 pubmed:25443311
  5. DNA Res. 2011 Dec;18(6):471-82 pubmed:22086998
  6. Curr Protoc Bioinformatics. 2007 Jun;Chapter 4:Unit 4.3 pubmed:18428791
  7. Genomics Proteomics Bioinformatics. 2010 Mar;8(1):77-80 pubmed:20451164
  8. Chromosome Res. 2009;17(5):699-717 pubmed:19802709
  9. Bioinformatics. 2012 Dec 1;28(23):3150-2 pubmed:23060610
  10. Genome Res. 2008 Dec;18(12):1944-54 pubmed:18832442
  11. Nat Biotechnol. 2015 May;33(5):524-30 pubmed:25893780
  12. Nucleic Acids Res. 2007;35(1):125-31 pubmed:17158149
  13. Cytogenet Genome Res. 2013;140(2-4):79-96 pubmed:23751271
  14. Genome Res. 2016 Mar;26(3):342-50 pubmed:26848124
  15. Sci Rep. 2016 Jun 24;6:28594 pubmed:27339202
  16. Science. 2002 Apr 5;296(5565):92-100 pubmed:11935018
  17. Bioinformatics. 2015 Oct 1;31(19):3210-2 pubmed:26059717
  18. Genome Res. 2009 Sep;19(9):1639-45 pubmed:19541911
  19. Genome Res. 2003 Sep;13(9):2178-89 pubmed:12952885
  20. Mol Biol Evol. 2011 Oct;28(10):2731-9 pubmed:21546353
  21. Science. 2009 Nov 20;326(5956):1112-5 pubmed:19965430
  22. Nucleic Acids Res. 1997 Mar 1;25(5):955-64 pubmed:9023104
  23. BMC Genomics. 2013 Feb 02;14:75 pubmed:23375136
  24. Genome Res. 2012 Jun;22(6):1184-95 pubmed:22391557
  25. Nature. 2016 Oct 19;538(7625):336-343 pubmed:27762356
  26. Annu Rev Plant Biol. 2007;58:267-94 pubmed:17222076
  27. Nature. 2006 Nov 16;444(7117):323-9 pubmed:17108957
  28. Nat Rev Genet. 2015 Nov;16(11):627-40 pubmed:26442640
  29. Genome Res. 2009 Nov;19(11):1925-8 pubmed:19596977
  30. Nat Genet. 2009 Dec;41(12):1275-81 pubmed:19881527
  31. PLoS One. 2015 Apr 01;10(4):e0121961 pubmed:25831195
  32. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 pubmed:15034147
  33. Am J Bot. 2011 Nov;98(11):e337-8 pubmed:22025294
  34. Science. 2009 Jan 2;323(5910):133-8 pubmed:19023044
  35. BMC Genomics. 2015 Sep 22;16:724 pubmed:26394688
  36. Genome Biol. 2008 Jan 11;9(1):R7 pubmed:18190707
  37. DNA Res. 2011 Feb;18(1):65-76 pubmed:21149391
  38. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W309-12 pubmed:15215400
  39. Bioinformatics. 2005 May 1;21(9):1859-75 pubmed:15728110
  40. G3 (Bethesda). 2015 Aug 28;5(11):2285-90 pubmed:26318155
  41. Science. 2014 Jul 18;345(6194):1251788 pubmed:25035500
  42. Nat Commun. 2016 Jun 24;7:11708 pubmed:27339440
  43. Genomics. 1997 Nov 15;46(1):37-45 pubmed:9403056
  44. Nat Commun. 2016 Jun 24;7:11706 pubmed:27339290
  45. Plant Mol Biol. 2011 Oct;77(3):299-308 pubmed:21811850
  46. Science. 2006 Sep 15;313(5793):1596-604 pubmed:16973872
  47. Genome Biol. 2015 Jan 31;16:26 pubmed:25637298
  48. Sci Rep. 2016 Mar 23;6:23540 pubmed:27005401
  49. Genome Biol. 2012 Jan 31;13(1):R4 pubmed:22293517
  50. Sci Rep. 2015 Dec 04;5:17662 pubmed:26634818
  51. Nat Biotechnol. 2016 May;34(5):562-70 pubmed:27088722
  52. Nat Biotechnol. 2010 Sep;28(9):951-6 pubmed:20729833
  53. Nature. 2008 Nov 27;456(7221):470-6 pubmed:18978772
  54. Biochem Biophys Res Commun. 2012 Mar 23;419(4):779-81 pubmed:22390928
  55. Genom Data. 2015 Jun 04;5:120-1 pubmed:26484238
  56. Front Genet. 2014 Jul 07;5:208 pubmed:25071835
  57. Sci Rep. 2016 Aug 30;6:31900 pubmed:27573208
  58. PLoS One. 2012;7(1):e29453 pubmed:22247776
  59. Proc Natl Acad Sci U S A. 2006 May 2;103(18):7175-80 pubmed:16632598
  60. PLoS One. 2012;7(11):e47768 pubmed:23185243
  61. PLoS One. 2014 Jul 21;9(7):e102665 pubmed:25048025
  62. Plant Cell. 2003 Apr;15(4):809-34 pubmed:12671079
  63. J Mol Evol. 2002 Apr;54(4):548-62 pubmed:11956693
  64. Nat Commun. 2014 Oct 10;5:5110 pubmed:25300236
  65. Genome Res. 2006 Oct;16(10):1262-9 pubmed:16963705
  66. Ann Bot. 2007 Dec;100(6):1125-42 pubmed:17650512
  67. Nucleic Acids Res. 2012 Apr;40(7):e49 pubmed:22217600
  68. Bioinformatics. 2004 Nov 1;20(16):2878-9 pubmed:15145805
  69. Bioinformatics. 2013 Nov 15;29(22):2933-5 pubmed:24008419
  70. Genome Biol. 2015 Jan 24;16:12 pubmed:25651398
  71. Front Plant Sci. 2015 May 27;6:367 pubmed:26074933
  72. Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8 pubmed:21045058
  73. Nat Plants. 2016 May 23;2(6):16073 pubmed:27255837
  74. Plant Sci. 2012 Apr;185-186:227-37 pubmed:22325885
  75. Genome Res. 2010 Feb;20(2):265-72 pubmed:20019144

MeSH Term

Alternative Splicing
Disease Resistance
Gene Duplication
Gene Ontology
Genome, Plant
Hevea
Hybridization, Genetic
Molecular Sequence Annotation
Open Reading Frames
Phylogeny
Plant Diseases
Repetitive Sequences, Nucleic Acid
Sequence Analysis, DNA
Tetraploidy