De novo hybrid assembly of the rubber tree genome reveals evidence of paleotetraploidy in Hevea species.

Wirulda Pootakham, Chutima Sonthirod, Chaiwat Naktang, Panthita Ruang-Areerate, Thippawan Yoocha, Duangjai Sangsrakru, Kanikar Theerawattanasuk, Ratchanee Rattanawong, Napawan Lekawipat, Sithichoke Tangphatsornruang
Author Information
  1. Wirulda Pootakham: National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand.
  2. Chutima Sonthirod: National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand.
  3. Chaiwat Naktang: National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand.
  4. Panthita Ruang-Areerate: National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand.
  5. Thippawan Yoocha: National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand.
  6. Duangjai Sangsrakru: National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand.
  7. Kanikar Theerawattanasuk: Rubber Authority of Thailand, Bang Khun Non, Bangkok, Thailand.
  8. Ratchanee Rattanawong: Rubber Authority of Thailand, Bang Khun Non, Bangkok, Thailand.
  9. Napawan Lekawipat: Rubber Authority of Thailand, Bang Khun Non, Bangkok, Thailand.
  10. Sithichoke Tangphatsornruang: National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand.

Abstract

Para rubber tree (Hevea brasiliensis) is an important economic species as it is the sole commercial producer of high-quality natural rubber. Here, we report a de novo hybrid assembly of BPM24 accession, which exhibits resistance to major fungal pathogens in Southeast Asia. Deep-coverage 454/Illumina short-read and Pacific Biosciences (PacBio) long-read sequence data were acquired to generate a preliminary draft, which was subsequently scaffolded using a long-range "Chicago" technique to obtain a final assembly of 1.26 Gb (N50 = 96.8 kb). The assembled genome contains 69.2% repetitive sequences and has a GC content of 34.31%. Using a high-density SNP-based genetic map, we were able to anchor 28.9% of the genome assembly (363 Mb) associated with over two thirds of the predicted protein-coding genes into rubber tree's 18 linkage groups. These genetically anchored sequences allowed comparative analyses of the intragenomic homeologous synteny, providing the first concrete evidence to demonstrate the presence of paleotetraploidy in Hevea species. Additionally, the degree of macrosynteny conservation observed between rubber tree and cassava strongly supports the hypothesis that the paleotetraploidization event took place prior to the divergence of the Hevea and Manihot species.

References

  1. Nat Genet. 2002 Jan;30(1):13-9 [PMID: 11753382]
  2. DNA Res. 2014 Dec;21(6):649-60 [PMID: 25233906]
  3. Nucleic Acids Res. 2015 Jan;43(Database issue):D130-7 [PMID: 25392425]
  4. BMC Plant Biol. 2014 Dec 02;14:341 [PMID: 25443311]
  5. DNA Res. 2011 Dec;18(6):471-82 [PMID: 22086998]
  6. Curr Protoc Bioinformatics. 2007 Jun;Chapter 4:Unit 4.3 [PMID: 18428791]
  7. Genomics Proteomics Bioinformatics. 2010 Mar;8(1):77-80 [PMID: 20451164]
  8. Chromosome Res. 2009;17(5):699-717 [PMID: 19802709]
  9. Bioinformatics. 2012 Dec 1;28(23):3150-2 [PMID: 23060610]
  10. Genome Res. 2008 Dec;18(12):1944-54 [PMID: 18832442]
  11. Nat Biotechnol. 2015 May;33(5):524-30 [PMID: 25893780]
  12. Nucleic Acids Res. 2007;35(1):125-31 [PMID: 17158149]
  13. Cytogenet Genome Res. 2013;140(2-4):79-96 [PMID: 23751271]
  14. Genome Res. 2016 Mar;26(3):342-50 [PMID: 26848124]
  15. Sci Rep. 2016 Jun 24;6:28594 [PMID: 27339202]
  16. Science. 2002 Apr 5;296(5565):92-100 [PMID: 11935018]
  17. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  18. Genome Res. 2009 Sep;19(9):1639-45 [PMID: 19541911]
  19. Genome Res. 2003 Sep;13(9):2178-89 [PMID: 12952885]
  20. Mol Biol Evol. 2011 Oct;28(10):2731-9 [PMID: 21546353]
  21. Science. 2009 Nov 20;326(5956):1112-5 [PMID: 19965430]
  22. Nucleic Acids Res. 1997 Mar 1;25(5):955-64 [PMID: 9023104]
  23. BMC Genomics. 2013 Feb 02;14:75 [PMID: 23375136]
  24. Genome Res. 2012 Jun;22(6):1184-95 [PMID: 22391557]
  25. Nature. 2016 Oct 19;538(7625):336-343 [PMID: 27762356]
  26. Annu Rev Plant Biol. 2007;58:267-94 [PMID: 17222076]
  27. Nature. 2006 Nov 16;444(7117):323-9 [PMID: 17108957]
  28. Nat Rev Genet. 2015 Nov;16(11):627-40 [PMID: 26442640]
  29. Genome Res. 2009 Nov;19(11):1925-8 [PMID: 19596977]
  30. Nat Genet. 2009 Dec;41(12):1275-81 [PMID: 19881527]
  31. PLoS One. 2015 Apr 01;10(4):e0121961 [PMID: 25831195]
  32. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  33. Am J Bot. 2011 Nov;98(11):e337-8 [PMID: 22025294]
  34. Science. 2009 Jan 2;323(5910):133-8 [PMID: 19023044]
  35. BMC Genomics. 2015 Sep 22;16:724 [PMID: 26394688]
  36. Genome Biol. 2008 Jan 11;9(1):R7 [PMID: 18190707]
  37. DNA Res. 2011 Feb;18(1):65-76 [PMID: 21149391]
  38. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W309-12 [PMID: 15215400]
  39. Bioinformatics. 2005 May 1;21(9):1859-75 [PMID: 15728110]
  40. G3 (Bethesda). 2015 Aug 28;5(11):2285-90 [PMID: 26318155]
  41. Science. 2014 Jul 18;345(6194):1251788 [PMID: 25035500]
  42. Nat Commun. 2016 Jun 24;7:11708 [PMID: 27339440]
  43. Genomics. 1997 Nov 15;46(1):37-45 [PMID: 9403056]
  44. Nat Commun. 2016 Jun 24;7:11706 [PMID: 27339290]
  45. Plant Mol Biol. 2011 Oct;77(3):299-308 [PMID: 21811850]
  46. Science. 2006 Sep 15;313(5793):1596-604 [PMID: 16973872]
  47. Genome Biol. 2015 Jan 31;16:26 [PMID: 25637298]
  48. Sci Rep. 2016 Mar 23;6:23540 [PMID: 27005401]
  49. Genome Biol. 2012 Jan 31;13(1):R4 [PMID: 22293517]
  50. Sci Rep. 2015 Dec 04;5:17662 [PMID: 26634818]
  51. Nat Biotechnol. 2016 May;34(5):562-70 [PMID: 27088722]
  52. Nat Biotechnol. 2010 Sep;28(9):951-6 [PMID: 20729833]
  53. Nature. 2008 Nov 27;456(7221):470-6 [PMID: 18978772]
  54. Biochem Biophys Res Commun. 2012 Mar 23;419(4):779-81 [PMID: 22390928]
  55. Genom Data. 2015 Jun 04;5:120-1 [PMID: 26484238]
  56. Front Genet. 2014 Jul 07;5:208 [PMID: 25071835]
  57. Sci Rep. 2016 Aug 30;6:31900 [PMID: 27573208]
  58. PLoS One. 2012;7(1):e29453 [PMID: 22247776]
  59. Proc Natl Acad Sci U S A. 2006 May 2;103(18):7175-80 [PMID: 16632598]
  60. PLoS One. 2012;7(11):e47768 [PMID: 23185243]
  61. PLoS One. 2014 Jul 21;9(7):e102665 [PMID: 25048025]
  62. Plant Cell. 2003 Apr;15(4):809-34 [PMID: 12671079]
  63. J Mol Evol. 2002 Apr;54(4):548-62 [PMID: 11956693]
  64. Nat Commun. 2014 Oct 10;5:5110 [PMID: 25300236]
  65. Genome Res. 2006 Oct;16(10):1262-9 [PMID: 16963705]
  66. Ann Bot. 2007 Dec;100(6):1125-42 [PMID: 17650512]
  67. Nucleic Acids Res. 2012 Apr;40(7):e49 [PMID: 22217600]
  68. Bioinformatics. 2004 Nov 1;20(16):2878-9 [PMID: 15145805]
  69. Bioinformatics. 2013 Nov 15;29(22):2933-5 [PMID: 24008419]
  70. Genome Biol. 2015 Jan 24;16:12 [PMID: 25651398]
  71. Front Plant Sci. 2015 May 27;6:367 [PMID: 26074933]
  72. Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8 [PMID: 21045058]
  73. Nat Plants. 2016 May 23;2(6):16073 [PMID: 27255837]
  74. Plant Sci. 2012 Apr;185-186:227-37 [PMID: 22325885]
  75. Genome Res. 2010 Feb;20(2):265-72 [PMID: 20019144]

MeSH Term

Alternative Splicing
Disease Resistance
Gene Duplication
Gene Ontology
Genome, Plant
Hevea
Hybridization, Genetic
Molecular Sequence Annotation
Open Reading Frames
Phylogeny
Plant Diseases
Repetitive Sequences, Nucleic Acid
Sequence Analysis, DNA
Tetraploidy

Word Cloud

Created with Highcharts 10.0.0rubberHeveaspeciesassemblytreegenomenovohybridsequencesevidencepaleotetraploidyParabrasiliensisimportanteconomicsolecommercialproducerhigh-qualitynaturalreportdeBPM24accessionexhibitsresistancemajorfungalpathogensSoutheastAsiaDeep-coverage454/Illuminashort-readPacificBiosciencesPacBiolong-readsequencedataacquiredgeneratepreliminarydraftsubsequentlyscaffoldedusinglong-range"Chicago"techniqueobtainfinal126 GbN50 = 968 kbassembledcontains692%repetitiveGCcontent3431%Usinghigh-densitySNP-basedgeneticmapableanchor289%363 Mbassociatedtwothirdspredictedprotein-codinggenestree's18linkagegroupsgeneticallyanchoredallowedcomparativeanalysesintragenomichomeologoussyntenyprovidingfirstconcretedemonstratepresenceAdditionallydegreemacrosyntenyconservationobservedcassavastronglysupportshypothesispaleotetraploidizationeventtookplacepriordivergenceManihotDereveals

Similar Articles

Cited By (37)