Whole genomes and transcriptomes reveal adaptation and domestication of pistachio.

Lin Zeng, Xiao-Long Tu, He Dai, Feng-Ming Han, Bing-She Lu, Ming-Shan Wang, Hojjat Asadollahpour Nanaei, Ali Tajabadipour, Mehdi Mansouri, Xiao-Long Li, Li-Li Ji, David M Irwin, Hong Zhou, Min Liu, Hong-Kun Zheng, Ali Esmailizadeh, Dong-Dong Wu
Author Information
  1. Lin Zeng: State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
  2. Xiao-Long Tu: Allwegene Technologies Inc., Beijing, 102209, China.
  3. He Dai: Biomarker Technologies Corporation, Beijing, China.
  4. Feng-Ming Han: Biomarker Technologies Corporation, Beijing, China.
  5. Bing-She Lu: College of Landscape Architecture and Tourism, Agricultural University of Hebei, Baoding, 071000, China.
  6. Ming-Shan Wang: State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
  7. Hojjat Asadollahpour Nanaei: Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran.
  8. Ali Tajabadipour: Pistachio Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rafsanjan, Iran.
  9. Mehdi Mansouri: Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
  10. Xiao-Long Li: Biomarker Technologies Corporation, Beijing, China.
  11. Li-Li Ji: Allwegene Technologies Inc., Beijing, 102209, China.
  12. David M Irwin: Department of Laboratory Medicine and Pathobiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, M5S 1A8, Canada.
  13. Hong Zhou: Chinese Academy of Forestry Sciences, Beijing, China.
  14. Min Liu: Biomarker Technologies Corporation, Beijing, China.
  15. Hong-Kun Zheng: Biomarker Technologies Corporation, Beijing, China.
  16. Ali Esmailizadeh: Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran. aliesmaili@uk.ac.ir.
  17. Dong-Dong Wu: State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. wudongdong@mail.kiz.ac.cn.

Abstract

BACKGROUND: Pistachio (Pistacia vera), one of the most important commercial nut crops worldwide, is highly adaptable to abiotic stresses and is tolerant to drought and salt stresses.
RESULTS: Here, we provide a draft de novo genome of pistachio as well as large-scale genome resequencing. Comparative genomic analyses reveal stress adaptation of pistachio is likely attributable to the expanded cytochrome P450 and chitinase gene families. Particularly, a comparative transcriptomic analysis shows that the jasmonic acid (JA) biosynthetic pathway plays an important role in salt tolerance in pistachio. Moreover, we resequence 93 cultivars and 14 wild P. vera genomes and 35 closely related wild Pistacia genomes, to provide insights into population structure, genetic diversity, and domestication. We find that frequent genetic admixture occurred among the different wild Pistacia species. Comparative population genomic analyses reveal that pistachio was domesticated about 8000 years ago and suggest that key genes for domestication related to tree and seed size experienced artificial selection.
CONCLUSIONS: Our study provides insight into genetic underpinning of local adaptation and domestication of pistachio. The Pistacia genome sequences should facilitate future studies to understand the genetic basis of agronomically and environmentally related traits of desert crops.

Keywords

References

  1. Heredity (Edinb). 2010 Apr;104(4):327-8 [PMID: 20010959]
  2. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  3. Bioinformatics. 2007 May 1;23(9):1061-7 [PMID: 17332020]
  4. PLoS Genet. 2012;8(11):e1002967 [PMID: 23166502]
  5. Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:4.10.1-4.10.14 [PMID: 19274634]
  6. J Chem Ecol. 2001 Feb;27(2):327-42 [PMID: 14768818]
  7. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  8. Plant J. 2002 Jul;31(1):1-12 [PMID: 12100478]
  9. Science. 2013 Dec 20;342(6165):1241089 [PMID: 24357323]
  10. J Chem Ecol. 2014 Jun;40(6):632-42 [PMID: 24916768]
  11. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269-73 [PMID: 291943]
  12. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  13. Mob DNA. 2015 Jun 02;6:11 [PMID: 26045719]
  14. PLoS One. 2012;7(12):e52249 [PMID: 23284954]
  15. Plant Cell Physiol. 2015 Apr;56(4):779-89 [PMID: 25637374]
  16. Curr Opin Plant Biol. 2007 Oct;10(5):453-60 [PMID: 17900969]
  17. Bioinformatics. 2011 Feb 15;27(4):578-9 [PMID: 21149342]
  18. Am J Hum Genet. 2007 Nov;81(5):1084-97 [PMID: 17924348]
  19. J Mol Evol. 1985;22(2):160-74 [PMID: 3934395]
  20. BMC Bioinformatics. 2003 Sep 11;4:41 [PMID: 12969510]
  21. Genome Biol. 2006;7(4):212 [PMID: 16677430]
  22. Gigascience. 2012 Dec 27;1(1):18 [PMID: 23587118]
  23. Nucleic Acids Res. 2016 May 19;44(9):e89 [PMID: 26893356]
  24. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  25. Cell Mol Biol Lett. 2003;8(3):809-24 [PMID: 12949620]
  26. Plant J. 2010 Jan;61(2):200-10 [PMID: 19832945]
  27. Bioinformatics. 2005 Jun;21 Suppl 1:i152-8 [PMID: 15961452]
  28. Nucleic Acids Res. 2010 Dec;38(22):e199 [PMID: 20880995]
  29. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  30. BMC Genomics. 2016 Dec 7;17(1):998 [PMID: 27923352]
  31. PLoS One. 2016 Sep 02;11(9):e0162253 [PMID: 27588421]
  32. Curr Protoc Bioinformatics. 2007 Jun;Chapter 4:Unit 4.3 [PMID: 18428791]
  33. Mol Plant. 2015 Jun;8(6):922-34 [PMID: 25825286]
  34. Nat Protoc. 2012 Mar 01;7(3):562-78 [PMID: 22383036]
  35. Nucleic Acids Res. 1997 Mar 1;25(5):955-64 [PMID: 9023104]
  36. Bioinformatics. 2005 Jun;21 Suppl 1:i351-8 [PMID: 15961478]
  37. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7987-92 [PMID: 9223300]
  38. Plant Cell. 1997 Dec;9(12):2243-59 [PMID: 9437865]
  39. Nucleic Acids Res. 2003 Jan 1;31(1):439-41 [PMID: 12520045]
  40. Planta. 2011 Jul;234(1):123-37 [PMID: 21390509]
  41. Bioinformatics. 2003 Oct;19 Suppl 2:ii215-25 [PMID: 14534192]
  42. Plant Biotechnol J. 2016 Sep;14(9):1838-51 [PMID: 26970512]
  43. Nucleic Acids Res. 2003 Oct 1;31(19):5654-66 [PMID: 14500829]
  44. Nat Genet. 2016 Aug 30;48(9):972-3 [PMID: 27573682]
  45. Hortic Res. 2018 Nov 20;5:72 [PMID: 30479779]
  46. Nature. 2013 Jun 6;498(7452):94-8 [PMID: 23665961]
  47. Genomics. 2011 Aug;98(2):152-3 [PMID: 21651976]
  48. Nucleic Acids Res. 2015 Jul 13;43(12):e78 [PMID: 25870408]
  49. Trends Plant Sci. 2018 Apr;23(4):276-279 [PMID: 29530379]
  50. Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30 [PMID: 24288371]
  51. Nat Biotechnol. 2011 Dec 11;30(1):105-11 [PMID: 22158310]
  52. Genome Res. 2003 Sep;13(9):2178-89 [PMID: 12952885]
  53. Nucleic Acids Res. 2003 Jan 1;31(1):365-70 [PMID: 12520024]
  54. Bioinformatics. 2005 Sep 15;21(18):3674-6 [PMID: 16081474]
  55. Heredity (Edinb). 2013 Apr;110(4):303-11 [PMID: 23188175]
  56. Science. 2017 Jul 7;357(6346):93-97 [PMID: 28684525]
  57. Front Plant Sci. 2013 Oct 09;4:397 [PMID: 24130566]
  58. Genome Res. 2002 Apr;12(4):656-64 [PMID: 11932250]
  59. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4151-E4158 [PMID: 29678829]
  60. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1513-8 [PMID: 21187386]
  61. Science. 2006 Sep 15;313(5793):1596-604 [PMID: 16973872]
  62. Science. 2010 May 7;328(5979):710-722 [PMID: 20448178]
  63. J Mol Biol. 1997 Apr 25;268(1):78-94 [PMID: 9149143]
  64. Nucleic Acids Res. 2016 Jul 8;44(12):e113 [PMID: 27131372]
  65. PLoS One. 2012;7(11):e47768 [PMID: 23185243]
  66. Bioinformatics. 2006 May 15;22(10):1269-71 [PMID: 16543274]
  67. BMC Genomics. 2017 Aug 17;18(1):627 [PMID: 28814265]
  68. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W265-8 [PMID: 17485477]
  69. Genome Biol. 2008 Jan 11;9(1):R7 [PMID: 18190707]
  70. Evolution. 1984 Nov;38(6):1358-1370 [PMID: 28563791]
  71. Nature. 2011 Jul 13;475(7357):493-6 [PMID: 21753753]
  72. BMC Syst Biol. 2013;7 Suppl 6:S5 [PMID: 24564924]
  73. Nat Rev Genet. 2007 Dec;8(12):973-82 [PMID: 17984973]
  74. Bioinformatics. 2004 Nov 1;20(16):2878-9 [PMID: 15145805]
  75. Bioinformatics. 2013 Nov 15;29(22):2933-5 [PMID: 24008419]
  76. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  77. Syst Biol. 2010 May;59(3):307-21 [PMID: 20525638]
  78. Science. 2008 Apr 25;320(5875):486-8 [PMID: 18436778]
  79. BMC Bioinformatics. 2004 May 14;5:59 [PMID: 15144565]
  80. J Exp Bot. 2012 Jun;63(10):3571-86 [PMID: 22412186]

MeSH Term

Adaptation, Biological
Domestication
Evolution, Molecular
Genome, Plant
Multigene Family
Pistacia
Salt Tolerance
Transcriptome

Word Cloud

Created with Highcharts 10.0.0pistachioPistaciadomesticationgeneticveragenomerevealadaptationwildgenomesrelatedimportantcropsstressessaltprovideComparativegenomicanalysespopulationselectionBACKGROUND:PistachioonecommercialnutworldwidehighlyadaptableabiotictolerantdroughtRESULTS:draftdenovowelllarge-scaleresequencingstresslikelyattributableexpandedcytochromeP450chitinasegenefamiliesParticularlycomparativetranscriptomicanalysisshowsjasmonicacidJAbiosyntheticpathwayplaysroletoleranceMoreoverresequence93cultivars14P35closelyinsightsstructurediversityfindfrequentadmixtureoccurredamongdifferentspeciesdomesticated8000 yearsagosuggestkeygenestreeseedsizeexperiencedartificialCONCLUSIONS:studyprovidesinsightunderpinninglocalsequencesfacilitatefuturestudiesunderstandbasisagronomicallyenvironmentallytraitsdesertWholetranscriptomesArtificialCropGenome

Similar Articles

Cited By