Investigating the antimicrobial and antibiofilm effects of cinnamaldehyde against Campylobacter spp. using cell surface characteristics.

Hwan Hee Yu, Ye Ji Song, Hyung-Seok Yu, Na-Kyoung Lee, Hyun-Dong Paik
Author Information
  1. Hwan Hee Yu: Dept. of Food Science and Biotechnology of Animal Resources, Konkuk Univ., Seoul, 143-701, Republic of Korea.
  2. Ye Ji Song: Dept. of Food Science and Biotechnology of Animal Resources, Konkuk Univ., Seoul, 143-701, Republic of Korea.
  3. Hyung-Seok Yu: Dept. of Food Science and Biotechnology of Animal Resources, Konkuk Univ., Seoul, 143-701, Republic of Korea.
  4. Na-Kyoung Lee: Dept. of Food Science and Biotechnology of Animal Resources, Konkuk Univ., Seoul, 143-701, Republic of Korea.
  5. Hyun-Dong Paik: Dept. of Food Science and Biotechnology of Animal Resources, Konkuk Univ., Seoul, 143-701, Republic of Korea. ORCID

Abstract

Campylobacter species are known as biofilm-forming bacteria in food systems. The aim of this study was to evaluate the antimicrobial and antibiofilm effects of Cinnamaldehyde against Campylobacter jejuni and Campylobacter coli isolated from chicken meat. The biofilm-forming C. jejuni and C. coli strains from chicken meat were investigated using minimum inhibitory concentration (MIC) and Campylobacter spp. characteristics. The MIC value was 31.25 µg/mL for the Campylobacter strains tested. Cinnamaldehyde had an inhibition and degradation effect on Campylobacter biofilms at concentrations > 15.63 µg/mL. Campylobacter strains treated with 15.63 µg/mL CA exhibited significantly decreased autoaggregation, motility, exopolysaccharide production, and soluble protein. In addition, Campylobacter biofilms formed on stainless steel were degraded following Cinnamaldehyde treatment, as determined by scanning electron microscopy. Taken together, these results suggest that Cinnamaldehyde constitutes a potential natural preservative against Campylobacter and a nontoxic biofilm remover that could be applied to control food poisoning in the poultry manufacturing-related food industry. PRACTICAL APPLICATION: Cinnamaldehyde was able to effectively remove the biofilm of Campylobacter in the small crack of stainless steel. Cinnamaldehyde has a potential to replace the synthetic antimicrobial and/or antibiofilm agent as well as has a positive influence on consumer concern for the food safety issues of the poultry industries.

Keywords

References

  1. Bolton, D. J. (2015). Campylobacter virulence and survival factors. Food Microbiology, 48, 99-108.
  2. Bridier, A., Sanchez-Vizuete, P., Guilbaud, M., Piard, J. C., Naïtali, M., & Briandet, R. (2015). Biofilm-associated persistence of food-borne pathogens. Food Microbiology, 45, 167-178.
  3. Brown, H. L., Reuter, M., Hanman, K., Betts, R. P., & van Vliet, A. H. (2015). Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni. PLoS One, 10(3), e0121680.
  4. Choi, N. Y., Bae, Y. M., & Lee, S. Y. (2015). Cell surface properties and biofilm formation of pathogenic bacteria. Food Science and Biotechnology, 24(6), 2257-2264.
  5. Dasti, J. I., Tareen, A. M., Lugert, R., Zautner, A. E., & Groß, U. (2010). Campylobacter jejuni: A brief overview on pathogenicity-associated factors and disease-mediating mechanisms. International Journal of Medical Microbiology, 300, 205-211.
  6. Duarte, A., Luís, Â., Oleastro, M., & Domingues, F. C. (2016). Antioxidant properties of coriander essential oil and linalool and their potential to control Campylobacter spp. Food Control, 61, 115-122.
  7. FDA. (2016). Food and drugs. 21 (Vol. 21CFR182.60). Retrieved from http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm.
  8. Feng, J., Ma, L., Nie, J., Konkel, M. E., & Lu, X. (2018). Environmental stress-induced bacterial lysis and extracellular DNA release contribute to Campylobacter jejuni biofilm formation. Applied and Environmental Microbiology, 84. https://doi.org/10.1128/AEM.02068-17.
  9. Ferreira, C., Pereira, A. M., Melo, L. F., & Simões, M. (2010). Advances in industrial biofilm control with micro-nanotechnology. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 2, 845-854.
  10. Golden, N. J., & Acheson, D. W. (2002). Identification of motility and autoagglutination Campylobacter jejuni mutants by random transposon mutagenesis. Infection and Immunity, 70, 1761-1771.
  11. Gowder, S. J. T. (2014). Safety assessment of food flavor-cinnamaldehyde. Biosafety, 3, e147.
  12. Gunther IV, N. W., & Chen, C. Y. (2009). The biofilm forming potential of bacterial species in the genus Campylobacter. Food Microbiology, 26, 44-51.
  13. Hermans, D., Martel, A., van Deun, K., van Immerseel, F., Heyndrickx, M., Haesebrouck, F., & Pasmans, F. (2011). The cinnamon-oil ingredient trans-cinnamaldehyde fails to target Campylobacter jejuni strain KC 40 in the broiler chicken cecum despite marked in vitro activity. Journal of Food Protection, 74, 1729-1734.
  14. Hyldgaard, M., Mygind, T., & Meyer, R. L. (2012). Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology, 3, 12.
  15. Jansaento, W., Jangpatarapongsa, K., Polpanich, D., & Wonglumsom, W. (2016). Detection of Campylobacter DNA using magnetic nanoparticles coupled with PCR and a colorimetric end-point system. Food Science and Biotechnology, 25(1), 193-198.
  16. Jia, P., Xue, Y. J., Duan, X. J., & Shao, S. H. (2011). Effect of cinnamaldehyde on biofilm formation and sarA expression by methicillin-resistant Staphylococcus aureus. Letters in Applied Microbiology, 53(4), 409-416.
  17. Jung, G. H., Lim, E. S., Woo, M. A., Lee, J. Y., Kim, J. S., & Paik, H. D. (2017). Inverse correlation between extracellular DNase activity and biofilm formation among chicken-derived Campylobacter strains. Journal of Microbiology and Biotechnology, 27, 1942-1951.
  18. Kang, J., Jin, W., Wang, J., Sun, Y., Wu, X., & Liu, L. (2019). Antibacterial and anti-biofilm activities of peppermint essential oil against Staphylococcus aureus. LWT-Food Science and Technology, 101, 639-645.
  19. Kim, J. S., Park, C., & Kim, Y. J. (2015). Role of flgA for flagellar biosynthesis and biofilm formation of Campylobacter jejuni NCTC 11168. Journal of Microbiology and Biotechnology, 25, 1871-1879.
  20. Kim, S. H., Park, C., Lee, E. J., Bang, W. S., Kim, Y. J., & Kim, J. S. (2017). Biofilm formation of Campylobacter strains isolated from raw chickens and its reduction with DNase I treatment. Food Control, 71, 94-100.
  21. Kumar, A., Alam, A., Rani, M., Ehtesham, N. Z., & Hasnain, S. E. (2017). Biofilms: Survival and defense strategy for pathogens. International Journal of Medical Microbiology, 307, 481-489.
  22. Lee, N. K., Han, K. J., Son, S. H., Eom, S. J., Lee, S. K., & Paik, H. D. (2015). Multifunctional effect of probiotic Lactococcus lactis KC24 isolated from kimchi. LWT-Food Science and Technology, 64, 1036-1041.
  23. Lee, N. K., Jung, B. S., Na, D. S., Yu, H. H., Kim, J. S., & Paik, H. D. (2016). The impact of antimicrobial effect of chestnut inner shell extracts against Campylobacter jejuni in chicken meat. LWT-Food Science and Technology, 65, 746-750.
  24. Lemon, K. P., Higgins, D. E., & Kolter, R. (2007). Flagellar motility is critical for Listeria monocytogenes biofilm formation. Journal of Bacteriology, 189, 4418-4424.
  25. Lin, L., Zhu, Y., & Cui, H. (2018). Electrospun thyme essential oil/gelatin nanofibers for active packaging against Campylobacter jejuni in chicken. LWT-Food Science and Technology, 97, 711-718.
  26. Meesilp, N., & Mesil, N. (2019). Effect of microbial sanitizers for reducing biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa on stainless steel by cultivation with UHT milk. Food Science and Biotechnology, 28, 289-296.
  27. Misawa, N., & Blaser, M. J. (2000). Detection and characterization of autoagglutination activity by Campylobacter jejuni. Infection and Immunity, 68, 6168-6175.
  28. Nguyen, V. T., Turner, M. S., & Dykes, G. A. (2011). Influence of cell surface hydrophobicity on attachment of Campylobacter to abiotic surfaces. Food Microbiology, 28, 942-950.
  29. Pometto III, A. L., & Demirci, A. (2015). Biofilms in the food environment (2nd ed.). Hoboken, NJ: John Wiley & Sons.
  30. Reller, L. B., Weinstein, M., Jorgensen, J. H., & Ferraro, M. J. (2009). Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clinical Infectious Diseases, 49, 1749-1755.
  31. Salaheen, S., Nguyen, C., Hewes, D., & Biswas, D. (2014). Cheap extraction of antibacterial compounds of berry pomace and their mode of action against the pathogen Campylobacter jejuni. Food Control, 46, 174-181.
  32. Sanla-Ead, N., Jangchud, A., Chonhenchob, V., & Suppakul, P. (2012). Antimicrobial activity of cinnamaldehyde and eugenol and their activity after incorporation into cellulose-based packaging films. Packaging Technology and Science, 25, 7-17.
  33. Sherlock, O., Vejborg, R. M., & Klemm, P. (2005). The TibA adhesin/invasin from enterotoxigenic Escherichia coli is self recognizing and induces bacterial aggregation and biofilm formation. Infection and Immunity, 73, 1954-1963.
  34. Silva, A. F., Dos Santos, A. R., Coelho Trevisan, D. A., Ribeiro, A. B., Zanetti Campanerut-Sá, P. A., Kukolj, C., … Graton Mikcha, J. M. (2018). Cinnamaldehyde induces changes in the protein profile of Salmonella Typhimurium biofilm. Research in Microbiology, 169, 33-43.
  35. Skarp, C. P. A., Hänninen, M. L., & Rautelin, H. I. K. (2016). Campylobacteriosis: The role of poultry meat. Clinical Microbiology and Infection, 22, 103-109.
  36. Srey, S., Jahid, I. K., & Ha, S. D. (2013). Biofilm formation in food industries: A food safety concern. Food Control, 31, 572-585.
  37. Subhaswaraj, P., Barik, S., Macha, C., Chiranjeevi, P. V., & Siddhardha, B. (2018). Anti quorum sensing and antibiofilm efficacy of cinnamaldehyde encapsulated chitosan nanoparticles against Pseudomonas aeruginosa PAO1. LWT-Food Science and Technology, 97, 752-759.
  38. Tiwari, V., Tiwari, D., Patel, V., & Tiwari, M. (2017). Effect of secondary metabolite of Actinidia deliciosa on the biofilm and extra-cellular matrix components of Acinetobacter baumannii. Microbial Pathogenesis, 110, 345-351.
  39. Upadhyay, A., Arsi, K., Wagle, B. R., Upadhyaya, I., Shrestha, S., Donoghue, A. M., & Donoghue, D. J. (2017). Trans-cinnamaldehyde, carvacrol, and eugenol reduce Campylobacter jejuni colonization factors and expression of virulence genes in vitro. Frontiers in Microbiology, 8, 713.
  40. Wang, Y., Zhang, Y., Shi, Y. Q., Pan, X. H., Lu, Y. H., & Cao, P. (2018). Antibacterial effects of cinnamon (Cinnamomum zeylanicum) bark essential oil on Porphyromonas gingivalis. Microbial Pathogenesis, 116, 26-32.

MeSH Term

Acrolein
Animals
Anti-Bacterial Agents
Bacteria
Biofilms
Campylobacter coli
Campylobacter jejuni
Chickens
Meat
Microbial Sensitivity Tests
Stainless Steel

Chemicals

Anti-Bacterial Agents
Stainless Steel
Acrolein
cinnamaldehyde

Word Cloud

Created with Highcharts 10.0.0Campylobactercinnamaldehydefoodantimicrobialantibiofilmjejunicolistrainsµg/mLCinnamaldehydeeffectbiofilm-formingeffectschickenmeatCusingMICsppcharacteristicsbiofilms1563stainlesssteelpotentialbiofilmpoultryspeciesknownbacteriasystemsaimstudyevaluateisolatedinvestigatedminimuminhibitoryconcentrationvalue3125testedinhibitiondegradationconcentrations>treatedCAexhibitedsignificantlydecreasedautoaggregationmotilityexopolysaccharideproductionsolubleproteinadditionformeddegradedfollowingtreatmentdeterminedscanningelectronmicroscopyTakentogetherresultssuggestconstitutesnaturalpreservativenontoxicremoverappliedcontrolpoisoningmanufacturing-relatedindustryPRACTICALAPPLICATION:ableeffectivelyremovesmallcrackreplacesyntheticand/oragentwellpositiveinfluenceconsumerconcernsafetyissuesindustriesInvestigatingcellsurface

Similar Articles

Cited By (14)