Over 50,000 Metagenomically Assembled Draft Genomes for the Human Oral Microbiome Reveal New Taxa.

Jie Zhu, Liu Tian, Peishan Chen, Mo Han, Liju Song, Xin Tong, Xiaohuan Sun, Fangming Yang, Zhipeng Lin, Xing Liu, Chuan Liu, Xiaohan Wang, Yuxiang Lin, Kaiye Cai, Yong Hou, Xun Xu, Huanming Yang, Jian Wang, Karsten Kristiansen, Liang Xiao, Tao Zhang, Huijue Jia, Zhuye Jie
Author Information
  1. Jie Zhu: BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China.
  2. Liu Tian: BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China.
  3. Peishan Chen: BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen 518083, China.
  4. Mo Han: BGI-Shenzhen, Shenzhen 518083, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark.
  5. Liju Song: BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China.
  6. Xin Tong: BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China.
  7. Xiaohuan Sun: BGI-Shenzhen, Shenzhen 518083, China.
  8. Fangming Yang: BGI-Shenzhen, Shenzhen 518083, China.
  9. Zhipeng Lin: BGI-Shenzhen, Shenzhen 518083, China.
  10. Xing Liu: BGI-Shenzhen, Shenzhen 518083, China.
  11. Chuan Liu: BGI-Shenzhen, Shenzhen 518083, China.
  12. Xiaohan Wang: BGI-Shenzhen, Shenzhen 518083, China.
  13. Yuxiang Lin: BGI-Shenzhen, Shenzhen 518083, China.
  14. Kaiye Cai: BGI-Shenzhen, Shenzhen 518083, China.
  15. Yong Hou: BGI-Shenzhen, Shenzhen 518083, China.
  16. Xun Xu: BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China.
  17. Huanming Yang: BGI-Shenzhen, Shenzhen 518083, China; James D. Watson Institute of Genome Sciences, Hangzhou 310058, China.
  18. Jian Wang: BGI-Shenzhen, Shenzhen 518083, China; James D. Watson Institute of Genome Sciences, Hangzhou 310058, China.
  19. Karsten Kristiansen: BGI-Shenzhen, Shenzhen 518083, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark.
  20. Liang Xiao: BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen 518083, China; BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China.
  21. Tao Zhang: BGI-Shenzhen, Shenzhen 518083, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark.
  22. Huijue Jia: BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China. Electronic address: jiahuijue@genomics.cn.
  23. Zhuye Jie: BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark. Electronic address: jiezhuye@genomics.cn.

Abstract

The oral cavity of each person is home to hundreds of bacterial species. While taxa for oral diseases have been studied using culture-based characterization as well as amplicon sequencing, metagenomic and genomic information remains scarce compared to the fecal microbiome. Here, using metagenomic shotgun data for 3346 oral metagenomic samples together with 808 published samples, we obtain 56,213 metagenome-assembled genomes (MAGs), and more than 64% of the 3589 species-level genome bins (SGBs) contain no publicly available genomes. The resulting genome collection is representative of samples around the world and contains many genomes from candidate phyla radiation (CPR) that lack monoculture. Also, it enables the discovery of new taxa such as a genus Candidatus Bgiplasma within the family Acholeplasmataceae. Large-scale metagenomic data from massive samples also allow the assembly of strains from important oral taxa such as Porphyromonas and Neisseria. The oral microbes encode genes that could potentially metabolize drugs. Apart from these findings, a strongly male-enriched Campylobacter species was identified. Oral samples would be more user-friendly collected than fecal samples and have the potential for disease diagnosis. Thus, these data lay down a genomic framework for future inquiries of the Human oral microbiome.

Keywords

References

  1. Nat Commun. 2015 Mar 11;6:6528 [PMID: 25758642]
  2. Nat Med. 2019 Apr;25(4):679-689 [PMID: 30936547]
  3. Gigascience. 2020 Jul 1;9(7): [PMID: 32657325]
  4. J Physiol Biochem. 2021 Feb;77(1):155-166 [PMID: 32648199]
  5. Nat Rev Drug Discov. 2019 Jul;18(8):569-572 [PMID: 31367062]
  6. Mol Cell. 2015 Nov 5;60(3):385-97 [PMID: 26593719]
  7. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  8. Nature. 2018 Mar 29;555(7698):623-628 [PMID: 29555994]
  9. PeerJ. 2019 Jul 26;7:e7359 [PMID: 31388474]
  10. Methods Mol Biol. 2019;1962:1-14 [PMID: 31020551]
  11. Nature. 2012 Jun 13;486(7402):207-14 [PMID: 22699609]
  12. Genome Res. 2018 Oct;28(10):1467-1480 [PMID: 30232199]
  13. NPJ Biofilms Microbiomes. 2017 Nov 29;3:34 [PMID: 29214046]
  14. Nature. 2014 Sep 4;513(7516):59-64 [PMID: 25079328]
  15. Nat Commun. 2018 Nov 30;9(1):5114 [PMID: 30504855]
  16. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  17. Nat Commun. 2013;4:2304 [PMID: 23942190]
  18. mBio. 2015 Feb 17;6(1):e01926-14 [PMID: 25691586]
  19. Nat Microbiol. 2019 Jun;4(6):964-971 [PMID: 30911128]
  20. Elife. 2019 Feb 12;8: [PMID: 30747106]
  21. ISME J. 2017 May;11(5):1218-1231 [PMID: 28072421]
  22. ISME J. 2017 Dec;11(12):2864-2868 [PMID: 28742071]
  23. Sci Adv. 2019 Aug 07;5(8):eaax2358 [PMID: 31457102]
  24. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  25. Science. 2017 Oct 20;358(6361):359-365 [PMID: 29051379]
  26. Gigascience. 2018 May 1;7(5): [PMID: 29762673]
  27. Gut. 2017 Jan;66(1):70-78 [PMID: 26408641]
  28. Genomics Proteomics Bioinformatics. 2022 Apr;20(2):304-321 [PMID: 34118463]
  29. Science. 2016 Apr 29;352(6285):565-9 [PMID: 27126040]
  30. Sci Adv. 2019 Jan 23;5(1):eaau3333 [PMID: 30746447]
  31. mSystems. 2018 Dec 4;3(6): [PMID: 30534599]
  32. Nat Commun. 2014 Apr 15;5:3654 [PMID: 24736369]
  33. Nature. 2017 Oct 5;550(7674):61-66 [PMID: 28953883]
  34. Nat Methods. 2016 May;13(5):435-8 [PMID: 26999001]
  35. PeerJ. 2015 Jun 18;3:e1029 [PMID: 26157614]
  36. Genome Res. 2017 May;27(5):824-834 [PMID: 28298430]
  37. Nat Rev Microbiol. 2016 Aug;14(8):508-22 [PMID: 27396567]
  38. PLoS One. 2015 Feb 24;10(2):e0115513 [PMID: 25710466]
  39. PLoS One. 2016 Oct 5;11(10):e0163962 [PMID: 27706213]
  40. Nat Biotechnol. 2019 Feb;37(2):179-185 [PMID: 30718868]
  41. Front Public Health. 2017 Aug 04;5:189 [PMID: 28824898]
  42. PLoS Comput Biol. 2011 Oct;7(10):e1002195 [PMID: 22039361]
  43. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  44. Mol Ecol. 2018 Jan;27(1):182-195 [PMID: 29165844]
  45. Cell Discov. 2021 Feb 9;7(1):9 [PMID: 33563976]
  46. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  47. Microbiome. 2019 Jul 17;7(1):107 [PMID: 31315667]
  48. Cancer Epidemiol Biomarkers Prev. 2017 Jun;26(6):945-952 [PMID: 28077427]
  49. Genomics Proteomics Bioinformatics. 2021 Aug;19(4):578-583 [PMID: 34400360]
  50. Microorganisms. 2020 Feb 23;8(2): [PMID: 32102216]
  51. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  52. BMC Genomics. 2015;16 Suppl 7:S4 [PMID: 26100814]
  53. Nat Methods. 2015 Jan;12(1):59-60 [PMID: 25402007]
  54. Bioinformatics. 2009 Aug 1;25(15):1972-3 [PMID: 19505945]
  55. Bioinformatics. 2012 Sep 1;28(17):2223-30 [PMID: 22796954]
  56. Nat Microbiol. 2016 Oct 10;2:16180 [PMID: 27723761]
  57. Nature. 2019 Apr;568(7753):499-504 [PMID: 30745586]
  58. Genome Res. 2015 Jul;25(7):1043-55 [PMID: 25977477]
  59. Nat Rev Genet. 2017 Jan;18(1):41-50 [PMID: 27840430]
  60. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  61. Cell. 2019 Jan 24;176(3):649-662.e20 [PMID: 30661755]
  62. Nat Med. 2015 Aug;21(8):895-905 [PMID: 26214836]
  63. PLoS One. 2012;7(6):e37919 [PMID: 22675498]
  64. Gigascience. 2018 Mar 1;7(3):1-8 [PMID: 29293960]
  65. Nat Biotechnol. 2019 Feb;37(2):186-192 [PMID: 30718869]
  66. N Engl J Med. 2005 Nov 3;353(18):1899-911 [PMID: 16267321]
  67. Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):E791-800 [PMID: 26811460]
  68. Front Microbiol. 2018 Aug 22;9:2007 [PMID: 30186281]
  69. Genome Biol. 2012 Apr 16;13(9):R79 [PMID: 23013615]
  70. Nat Commun. 2017 Oct 10;8(1):845 [PMID: 29018189]
  71. Genome Biol. 2019 Nov 28;20(1):257 [PMID: 31779668]
  72. Genome Biol. 2016 Jun 20;17(1):132 [PMID: 27323842]
  73. Mol Syst Biol. 2014 Nov 28;10:766 [PMID: 25432777]
  74. Nature. 2019 Apr;568(7753):505-510 [PMID: 30867587]
  75. Microbiome. 2018 Feb 27;6(1):43 [PMID: 29482661]
  76. Bioinformatics. 2014 Jul 15;30(14):2068-9 [PMID: 24642063]
  77. BMC Bioinformatics. 2010 Oct 30;11:538 [PMID: 21034504]
  78. Nat Biotechnol. 2017 Aug 8;35(8):725-731 [PMID: 28787424]
  79. Database (Oxford). 2010 Jul 06;2010:baq013 [PMID: 20624719]
  80. Mol Biol Evol. 2017 Aug 1;34(8):2115-2122 [PMID: 28460117]
  81. Nucleic Acids Res. 2019 Jan 8;47(D1):D309-D314 [PMID: 30418610]

MeSH Term

Humans
Male
Metagenome
Microbiota
Metagenomics
Bacteria
Feces

Links to CNCB-NGDC Resources

Word Cloud

Created with Highcharts 10.0.0oralsamplesmetagenomictaxamicrobiomedatagenomesgenomespeciesusinggenomicfecalOralHumancavitypersonhomehundredsbacterialdiseasesstudiedculture-basedcharacterizationwellampliconsequencinginformationremainsscarcecomparedshotgun3346together808publishedobtain56213metagenome-assembledMAGs64%3589species-levelbinsSGBscontainpubliclyavailableresultingcollectionrepresentativearoundworldcontainsmanycandidatephylaradiationCPRlackmonocultureAlsoenablesdiscoverynewgenusCandidatusBgiplasmawithinfamilyAcholeplasmataceaeLarge-scalemassivealsoallowassemblystrainsimportantPorphyromonasNeisseriamicrobesencodegenespotentiallymetabolizedrugsApartfindingsstronglymale-enrichedCampylobacteridentifieduser-friendlycollectedpotentialdiseasediagnosisThuslayframeworkfutureinquirieshuman50000MetagenomicallyAssembledDraftGenomesMicrobiomeRevealNewTaxaGenderGenomecatalogMetagenome-assemblyMetagenomics

Similar Articles

Cited By (30)