Genomic Perspectives on the Emerging SARS-CoV-2 Omicron Variant.

Wentai Ma, Jing Yang, Haoyi Fu, Chao Su, Caixia Yu, Qihui Wang, Ana Tereza Ribeiro de Vasconcelos, Georgii A Bazykin, Yiming Bao, Mingkun Li
Author Information
  1. Wentai Ma: CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  2. Jing Yang: CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  3. Haoyi Fu: CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  4. Chao Su: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
  5. Caixia Yu: National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China.
  6. Qihui Wang: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
  7. Ana Tereza Ribeiro de Vasconcelos: Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis 25651-075, Brazil.
  8. Georgii A Bazykin: Skolkovo Institute of Science and Technology, Moscow 121205, Russia; Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow 127051, Russia.
  9. Yiming Bao: University of Chinese Academy of Sciences, Beijing 100049, China; National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China.
  10. Mingkun Li: CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China. Electronic address: limk@big.ac.cn.

Abstract

A new variant of concern for SARS-CoV-2, Omicron (B.1.1.529), was designated by the World Health Organization on November 26, 2021. This study analyzed the viral genome sequencing data of 108 samples collected from patients infected with Omicron. First, we found that the enrichment efficiency of viral nucleic acids was reduced due to mutations in the region where the primers anneal to. Second, the Omicron variant possesses an excessive number of mutations compared to other variants circulating at the same time (median: 62 vs. 45), especially in the Spike gene. Mutations in the Spike gene confer alterations in 32 amino acid residues, more than those observed in other SARS-CoV-2 variants. Moreover, a large number of nonsynonymous mutations occur in the codons for the amino acid residues located on the surface of the Spike protein, which could potentially affect the replication, infectivity, and antigenicity of SARS-CoV-2. Third, there are 53 mutations between the Omicron variant and its closest sequences available in public databases. Many of these mutations were rarely observed in public databases and had a low mutation rate. In addition, the linkage disequilibrium between these mutations was low, with a limited number of mutations concurrently observed in the same genome, suggesting that the Omicron variant would be in a different evolutionary branch from the currently prevalent variants. To improve our ability to detect and track the source of new variants rapidly, it is imperative to further strengthen genomic surveillance and data sharing globally in a timely manner.

Keywords

References

  1. Science. 2021 Jan 8;371(6525):172-177 [PMID: 33172935]
  2. PLoS Comput Biol. 2019 Apr 8;15(4):e1006650 [PMID: 30958812]
  3. Nature. 2022 Mar;603(7902):679-686 [PMID: 35042229]
  4. Nature. 2022 Feb;602(7898):654-656 [PMID: 35016196]
  5. J Mol Biol. 2021 Jul 23;433(15):167058 [PMID: 34023401]
  6. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  7. Cell Host Microbe. 2021 Dec 8;29(12):1788-1801.e6 [PMID: 34822776]
  8. Nature. 2022 Feb;602(7898):657-663 [PMID: 35016194]
  9. Mol Biol Evol. 2020 May 1;37(5):1530-1534 [PMID: 32011700]
  10. Nature. 2021 Apr;592(7853):277-282 [PMID: 33545711]
  11. Glob Chall. 2017 Jan 10;1(1):33-46 [PMID: 31565258]
  12. iScience. 2022 Jan 21;25(1):103589 [PMID: 34909610]
  13. N Engl J Med. 2020 Dec 3;383(23):2291-2293 [PMID: 33176080]
  14. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  15. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  16. Nature. 2022 Feb;602(7896):294-299 [PMID: 34818667]
  17. J Genet Genomics. 2021 Dec;48(12):1111-1121 [PMID: 34954396]
  18. Cell Rep. 2021 Jun 29;35(13):109292 [PMID: 34166617]
  19. Nat Rev Genet. 2008 Jun;9(6):477-85 [PMID: 18427557]
  20. Science. 2022 May 6;376(6593):eabn4947 [PMID: 35289632]
  21. Nature. 2020 Jul;583(7815):282-285 [PMID: 32218527]
  22. Genomics Proteomics Bioinformatics. 2020 Dec;18(6):749-759 [PMID: 33704069]
  23. PLoS Pathog. 2020 May 14;16(5):e1008421 [PMID: 32407364]
  24. Science. 2021 Dec 3;374(6572):1179 [PMID: 34855502]
  25. Science. 2021 Oct 22;374(6566):472-478 [PMID: 34554826]
  26. Science. 2021 Oct 22;374(6566):423-431 [PMID: 34672751]
  27. Nature. 2020 Dec;588(7839):682-687 [PMID: 33045718]
  28. Genome Res. 2012 Mar;22(3):568-76 [PMID: 22300766]
  29. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  30. Genomics Proteomics Bioinformatics. 2022 Jan 3;: [PMID: 34990803]
  31. Nat Commun. 2021 Jul 7;12(1):4196 [PMID: 34234131]
  32. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  33. Nat Microbiol. 2020 Nov;5(11):1403-1407 [PMID: 32669681]
  34. Cell. 2020 May 14;181(4):894-904.e9 [PMID: 32275855]
  35. Nature. 2020 Mar;579(7798):265-269 [PMID: 32015508]

MeSH Term

Amino Acids
COVID-19
Genomics
Humans
Nucleic Acids
SARS-CoV-2
Spike Glycoprotein, Coronavirus

Chemicals

Amino Acids
Nucleic Acids
Spike Glycoprotein, Coronavirus
spike protein, SARS-CoV-2

Word Cloud

Created with Highcharts 10.0.0OmicronmutationsSARS-CoV-2variantvariantsnumberSpikeobservednewconcern1viralgenomedatageneaminoacidresiduespublicdatabaseslowVariantB529designatedWorldHealthOrganizationNovember262021studyanalyzedsequencing108samplescollectedpatientsinfectedFirstfoundenrichmentefficiencynucleicacidsreduceddueregionprimersannealSecondpossessesexcessivecomparedcirculatingtimemedian:62vs45especiallyMutationsconferalterations32MoreoverlargenonsynonymousoccurcodonslocatedsurfaceproteinpotentiallyaffectreplicationinfectivityantigenicityThird53closestsequencesavailableManyrarelymutationrateadditionlinkagedisequilibriumlimitedconcurrentlysuggestingdifferentevolutionarybranchcurrentlyprevalentimproveabilitydetecttracksourcerapidlyimperativestrengthengenomicsurveillancesharinggloballytimelymannerGenomicPerspectivesEmergingGenomicsMutation

Similar Articles

Cited By (33)