ID-Seg: an infant deep learning-based segmentation framework to improve limbic structure estimates.

Yun Wang, Fateme Sadat Haghpanah, Xuzhe Zhang, Katie Santamaria, Gabriela Koch da Costa Aguiar Alves, Elizabeth Bruno, Natalie Aw, Alexis Maddocks, Cristiane S Duarte, Catherine Monk, Andrew Laine, Jonathan Posner, program collaborators for Environmental influences on Child Health Outcomes
Author Information
  1. Yun Wang: Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
  2. Fateme Sadat Haghpanah: Department of Computer Science, University Of Toronto, Toronto, ON, Canada.
  3. Xuzhe Zhang: Department of Biomedical Engineering, Columbia University, New York, NY, USA.
  4. Katie Santamaria: New York State Psychiatric Institute, New York, NY, USA.
  5. Gabriela Koch da Costa Aguiar Alves: New York State Psychiatric Institute, New York, NY, USA.
  6. Elizabeth Bruno: New York State Psychiatric Institute, New York, NY, USA.
  7. Natalie Aw: New York State Psychiatric Institute, New York, NY, USA.
  8. Alexis Maddocks: Department of Radiology, Columbia University, New York, NY, USA.
  9. Cristiane S Duarte: New York State Psychiatric Institute, New York, NY, USA.
  10. Catherine Monk: New York State Psychiatric Institute, New York, NY, USA.
  11. Andrew Laine: Department of Biomedical Engineering, Columbia University, New York, NY, USA.
  12. Jonathan Posner: Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA. Jonathan.Posner@duke.edu.

Abstract

Infant brain magnetic resonance imaging (MRI) is a promising approach for studying early neurodevelopment. However, segmenting small regions such as limbic structures is challenging due to their low inter-regional contrast and high curvature. MRI studies of the adult brain have successfully applied deep learning techniques to segment limbic structures, and similar deep learning models are being leveraged for infant studies. However, these deep learning-based infant MRI segmentation models have generally been derived from small datasets, and may suffer from generalization problems. Moreover, the accuracy of segmentations derived from these deep learning models relative to more standard Expectation-Maximization approaches has not been characterized. To address these challenges, we leveraged a large, public infant MRI dataset (n���=���473) and the transfer-learning technique to first pre-train a deep convolutional neural network model on two limbic structures: amygdala and hippocampus. Then we used a leave-one-out cross-validation strategy to fine-tune the pre-trained model and evaluated it separately on two independent datasets with manual labels. We term this new approach the Infant Deep learning SEGmentation Framework (ID-Seg). ID-Seg performed well on both datasets with a mean dice similarity score (DSC) of 0.87, a mean intra-class correlation (ICC) of 0.93, and a mean average surface distance (ASD) of 0.31 mm. Compared to the Developmental Human Connectome pipeline (dHCP) pipeline, ID-Seg significantly improved segmentation accuracy. In a third infant MRI dataset (n���=���50), we used ID-Seg and dHCP separately to estimate amygdala and hippocampus volumes and shapes. The estimates derived from ID-seg, relative to those from the dHCP, showed stronger associations with behavioral problems assessed in these infants at age 2. In sum, ID-Seg consistently performed well on two different datasets with an 0.87 DSC, however, multi-site testing and extension for brain regions beyond the amygdala and hippocampus are still needed.

Keywords

References

  1. Transl Psychiatry. 2013 Sep 24;3:e306 [PMID: 24064710]
  2. Cells. 2020 Aug 10;9(8): [PMID: 32785181]
  3. Insight J. 2006;(1071):242-250 [PMID: 21941375]
  4. Neuroimage. 2019 Feb 1;186:713-727 [PMID: 30502445]
  5. JAMA Pediatr. 2018 Jun 1;172(6):525-533 [PMID: 29630692]
  6. Hum Brain Mapp. 2002 Nov;17(3):143-55 [PMID: 12391568]
  7. Neuroimage. 2019 Jul 15;195:11-22 [PMID: 30926511]
  8. Advers Resil Sci. 2020;1(4):217-221 [PMID: 33106790]
  9. Br J Psychiatry. 1987 Jun;150:782-6 [PMID: 3651732]
  10. Neuroimage. 2006 Jul 1;31(3):1116-28 [PMID: 16545965]
  11. IEEE Trans Med Imaging. 2004 Jul;23(7):903-21 [PMID: 15250643]
  12. Neuroimage. 2022 Jun;253:119097 [PMID: 35301130]
  13. Med Image Anal. 2021 Jul;71:102076 [PMID: 33930828]
  14. Lancet Neurol. 2008 May;7(5):378-9 [PMID: 18420149]
  15. Neuroinformatics. 2013 Apr;11(2):211-25 [PMID: 23055044]
  16. World Psychiatry. 2020 Jun;19(2):175-176 [PMID: 32394546]
  17. Med Image Anal. 2021 Apr;69:101980 [PMID: 33588116]
  18. J Med Imaging (Bellingham). 2017 Apr;4(2):024003 [PMID: 28439524]
  19. Med Image Comput Comput Assist Interv. 2020 Oct;12267:646-656 [PMID: 33564753]
  20. Neuroimage. 2018 Apr 15;170:434-445 [PMID: 28223187]
  21. Psychol Bull. 1979 Mar;86(2):420-8 [PMID: 18839484]
  22. Neuroimage. 2019 Jul 1;194:105-119 [PMID: 30910724]
  23. Neuroimage. 2020 Sep;218:116946 [PMID: 32442637]
  24. Front Neurosci. 2012 Dec 05;6:171 [PMID: 23227001]
  25. IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20 [PMID: 20378467]
  26. Neuroimage. 2018 Jun;173:88-112 [PMID: 29409960]
  27. Med Image Anal. 2005 Oct;9(5):457-66 [PMID: 16019252]
  28. Front Neurosci. 2019 Sep 24;13:1025 [PMID: 31616245]
  29. Neuroimage. 2017 Feb 15;147:841-851 [PMID: 27725314]
  30. Med Image Anal. 2018 Jan;43:214-228 [PMID: 29156419]
  31. IEEE Trans Med Imaging. 2020 Sep;39(9):2806-2817 [PMID: 32091996]
  32. Front Psychiatry. 2020 Jun 19;11:547 [PMID: 32636769]
  33. Neuroimage. 2018 Apr 15;170:456-470 [PMID: 28450139]
  34. J Am Acad Child Adolesc Psychiatry. 2017 Feb;56(2):157-166 [PMID: 28117062]
  35. Transl Psychiatry. 2016 Nov 1;6(11):e935 [PMID: 27801896]
  36. Neuroimage. 2012 Sep;62(3):1499-509 [PMID: 22713673]

Grants

  1. K99 HD103912/NICHD NIH HHS
  2. K99HD103912/Eunice Kennedy Shriver National Institute of Child Health and Human Development
  3. R01 MH121070/NIMH NIH HHS
  4. R00 HD103912/NICHD NIH HHS
  5. UH3 OD023328/NIH HHS
  6. UH3OD023328/NIH Office of the Director
  7. R01MH121070/NIMH NIH HHS

Word Cloud

Created with Highcharts 10.0.0deepMRIlearninginfantID-Seglimbicdatasets0InfantbrainmodelssegmentationderivedproblemstwoamygdalahippocampusmeandHCPapproachHoweversmallregionsstructuresstudiesleveragedlearning-basedaccuracyrelativedatasetneuralmodelusedseparatelyDeepperformedwellDSC87pipelineestimatesmagneticresonanceimagingpromisingstudyingearlyneurodevelopmentsegmentingchallengingduelowinter-regionalcontrasthighcurvatureadultsuccessfullyappliedtechniquessegmentsimilargenerallymaysuffergeneralizationMoreoversegmentationsstandardExpectation-Maximizationapproachescharacterizedaddresschallengeslargepublicn���=���473transfer-learningtechniquefirstpre-trainconvolutionalnetworkstructures:leave-one-outcross-validationstrategyfine-tunepre-trainedevaluatedindependentmanuallabelstermnewSEGmentationFrameworkdicesimilarityscoreintra-classcorrelationICC93averagesurfacedistanceASD31 mmComparedDevelopmentalHumanConnectomesignificantlyimprovedthirdn���=���50estimatevolumesshapesID-segshowedstrongerassociationsbehavioralassessedinfantsage2sumconsistentlydifferenthowevermulti-sitetestingextensionbeyondstillneededID-Seg:frameworkimprovestructureAmygdalaBehavioralConvolutionalnetworksHippocampusneuroimagingSegmentation

Similar Articles

Cited By (3)