Uncovering chains of infections through spatio-temporal and visual analysis of COVID-19 contact traces.

Dario Antweiler, David Sessler, Maxim Rossknecht, Benjamin Abb, Sebastian Ginzel, Jörn Kohlhammer
Author Information
  1. Dario Antweiler: Fraunhofer IAIS, Schloss Birlinghoven, Sankt Augustin, 53757, Germany.
  2. David Sessler: Fraunhofer IGD, Fraunhoferstraße 5, Darmstadt, 64283, Germany.
  3. Maxim Rossknecht: Fraunhofer IGD, Fraunhoferstraße 5, Darmstadt, 64283, Germany.
  4. Benjamin Abb: Fraunhofer IGD, Fraunhoferstraße 5, Darmstadt, 64283, Germany.
  5. Sebastian Ginzel: Fraunhofer IAIS, Schloss Birlinghoven, Sankt Augustin, 53757, Germany.
  6. Jörn Kohlhammer: Fraunhofer IGD, Fraunhoferstraße 5, Darmstadt, 64283, Germany.

Abstract

A major challenge for departments of public health (DPHs) in dealing with the ongoing COVID-19 pandemic is tracing contacts in exponentially growing SARS-CoV-2 infection clusters. Prevention of further disease spread requires a comprehensive registration of the connections between individuals and clusters. Due to the high number of infections with unknown origin, the healthcare analysts need to identify connected cases and clusters through accumulated epidemiological knowledge and the metadata of the infections in their database. Here we contribute a visual analytics dashboard to identify, assess and visualize clusters in COVID-19 contact tracing networks. Additionally, we demonstrate how graph-based machine learning methods can be used to find missing links between infection clusters and thus support the mission to get a comprehensive view on infection events. This work was developed through close collaboration with DPHs in Germany. We argue how our dashboard supports the identification of clusters by public health experts, discuss ongoing developments and possible extensions.

Keywords

References

  1. Philos Trans R Soc Lond B Biol Sci. 2019 Jul 8;374(1776):20180276 [PMID: 31104603]
  2. Nor Epidemiol. 2009;19(1):5-16 [PMID: 22544996]
  3. IEEE Trans Vis Comput Graph. 2021 Feb;27(2):711-721 [PMID: 33290223]
  4. Emerg Infect Dis. 2007 Oct;13(10):1548-55 [PMID: 18258005]
  5. IEEE Trans Vis Comput Graph. 2011 Dec;17(12):2301-9 [PMID: 22034350]
  6. KDD. 2016 Aug;2016:855-864 [PMID: 27853626]
  7. J Biomed Inform. 2014 Oct;51:287-98 [PMID: 24747356]
  8. Euro Surveill. 2015 Mar 26;20(12): [PMID: 25846493]
  9. Am J Public Health. 2007 Mar;97(3):470-7 [PMID: 17018825]
  10. IEEE Trans Neural Netw. 2009 Jan;20(1):61-80 [PMID: 19068426]
  11. PLoS Comput Biol. 2015 Mar 12;11(3):e1004152 [PMID: 25763816]
  12. Med Glas (Zenica). 2020 Aug 1;17(2):265-274 [PMID: 32602300]
  13. Comput Soc Netw. 2021;8(1):19 [PMID: 34642614]

Word Cloud

Created with Highcharts 10.0.0clustershealthCOVID-19infectioninfectionspublicDPHsongoingpandemictracingSARS-CoV-2comprehensiveidentifyvisualanalyticsdashboardcontactmajorchallengedepartmentsdealingcontactsexponentiallygrowingPreventiondiseasespreadrequiresregistrationconnectionsindividualsDuehighnumberunknownoriginhealthcareanalystsneedconnectedcasesaccumulatedepidemiologicalknowledgemetadatadatabasecontributeassessvisualizenetworksAdditionallydemonstrategraph-basedmachinelearningmethodscanusedfindmissinglinksthussupportmissiongetvieweventsworkdevelopedclosecollaborationGermanyarguesupportsidentificationexpertsdiscussdevelopmentspossibleextensionsUncoveringchainsspatio-temporalanalysistracesCoronavirusHealthcareinformationsystemsPublicVisual

Similar Articles

Cited By (1)