On sparse ensemble methods: An application to short-term predictions of the evolution of COVID-19.

Sandra Ben��tez-Pe��a, Emilio Carrizosa, Vanesa Guerrero, M Dolores Jim��nez-Gamero, Bel��n Mart��n-Barrag��n, Cristina Molero-R��o, Pepa Ram��rez-Cobo, Dolores Romero Morales, M Remedios Sillero-Denamiel
Author Information
  1. Sandra Ben��tez-Pe��a: Instituto de Matem��ticas de la Universidad de Sevilla, Seville, Spain.
  2. Emilio Carrizosa: Instituto de Matem��ticas de la Universidad de Sevilla, Seville, Spain.
  3. Vanesa Guerrero: Departamento de Estad��stica, Universidad Carlos III de Madrid, Getafe, Spain.
  4. M Dolores Jim��nez-Gamero: Instituto de Matem��ticas de la Universidad de Sevilla, Seville, Spain.
  5. Bel��n Mart��n-Barrag��n: The University of Edinburgh Business School, University of Edinburgh, Edinburgh, UK.
  6. Cristina Molero-R��o: Instituto de Matem��ticas de la Universidad de Sevilla, Seville, Spain.
  7. Pepa Ram��rez-Cobo: Departamento de Estad��stica e Investigaci��n Operativa, Universidad de C��diz, Cadiz, Spain.
  8. Dolores Romero Morales: Department of Economics, Copenhagen Business School, Frederiksberg, Denmark.
  9. M Remedios Sillero-Denamiel: Instituto de Matem��ticas de la Universidad de Sevilla, Seville, Spain.

Abstract

Since the seminal paper by Bates and Granger in 1969, a vast number of ensemble methods that combine different base regressors to generate a unique one have been proposed in the literature. The so-obtained regressor method may have better accuracy than its components, but at the same time it may overfit, it may be distorted by base regressors with low accuracy, and it may be too complex to understand and explain. This paper proposes and studies a novel Mathematical Optimization model to build a sparse ensemble, which trades off the accuracy of the ensemble and the number of base regressors used. The latter is controlled by means of a regularization term that penalizes regressors with a poor individual performance. Our approach is flexible to incorporate desirable properties one may have on the ensemble, such as controlling the performance of the ensemble in critical groups of records, or the costs associated with the base regressors involved in the ensemble. We illustrate our approach with real data sets arising in the COVID-19 context.

Keywords

References

  1. Neural Netw. 2015 Oct;70:39-52 [PMID: 26210983]
  2. J Comput Graph Stat. 2018;27(4):861-871 [PMID: 30618485]
  3. Int J Forecast. 2022 Apr-Jun;38(2):489-504 [PMID: 33071402]
  4. Biostatistics. 2017 Apr 1;18(2):244-259 [PMID: 27655816]
  5. Top (Berl). 2021;29(1):5-33 [PMID: 38624654]
  6. Eur J Oper Res. 2021 Apr 1;290(1):99-115 [PMID: 32836717]

Word Cloud

Created with Highcharts 10.0.0ensembleregressorsmaybaseaccuracyCOVID-19papernumberoneMathematicalOptimizationsparseperformanceapproachSinceseminalBatesGranger1969vastmethodscombinedifferentgenerateuniqueproposedliteratureso-obtainedregressormethodbettercomponentstimeoverfitdistortedlowcomplexunderstandexplainproposesstudiesnovelmodelbuildtradesusedlattercontrolledmeansregularizationtermpenalizespoorindividualflexibleincorporatedesirablepropertiescontrollingcriticalgroupsrecordscostsassociatedinvolvedillustraterealdatasetsarisingcontextmethods:applicationshort-termpredictionsevolutionEnsembleMethodMachineLearningSelectiveSparsity

Similar Articles

Cited By (5)