Local travel behaviour under continuing COVID-19 waves- A proxy for pandemic fatigue?

Nan Zhang, Tingrui Hu, Shujia Shang, Shiyao Zhang, Wei Jia, Jinhang Chen, Zixuan Zhang, Boni Su, Zhenyu Wang, Reynold Cheng, Yuguo Li
Author Information
  1. Nan Zhang: Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China.
  2. Tingrui Hu: Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China.
  3. Shujia Shang: Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China.
  4. Shiyao Zhang: The Sifakis Research Institute for Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen 518055, China.
  5. Wei Jia: Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.
  6. Jinhang Chen: Faculty of Information Technology, Beijing University of Technology, Beijing, China.
  7. Zixuan Zhang: Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China.
  8. Boni Su: China Electric Power Planning & Engineering Institute, Beijing, China.
  9. Zhenyu Wang: College of Economics and Management, Beijing University of Technology, Beijing, China.
  10. Reynold Cheng: Department of Computer Science, The University of Hong Kong, Hong Kong SAR, China.
  11. Yuguo Li: Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.

Abstract

COVID-19 continues to threaten the world. Relaxing local travel behaviours on preventing the spread of COVID-19, may increase the infection risk in subsequent waves of SARS-CoV-2 transmission. In this study, we analysed changes in the travel behaviour of different population groups (adult, child, student, elderly) during four pandemic waves in Hong Kong before January 2021, by 4-billion second-by-second smartcard records of subway. A significant continuous relaxation in human travel behaviour was observed during the four waves of SARS-CoV-2 transmission. Residents sharply reduced their local travel by 51.9%, 50.1%, 27.6%, and 20.5% from the first to fourth pandemic waves, respectively. The population flow in residential areas, workplaces, schools, shopping areas, amusement areas and border areas, decreased on average by 30.3%, 33.5%, 41.9%, 58.1%, 85.4% and 99.6%, respectively, during the pandemic weeks. We also found that many other cities around the world experienced a similar relaxation trend in local travel behaviour, by comparing traffic congestion data during the pandemic with data from the same period in 2019. The quantitative pandemic fatigue in local travel behaviour could help governments partially predicting personal protective behaviours, and thus to suggest more accurate interventions during subsequent waves, especially for highly infectious virus variants such as Omicron.

Keywords

References

  1. Ann Med Surg (Lond). 2021 May;65:102298 [PMID: 33880181]
  2. Lancet Infect Dis. 2020 Nov;20(11):1247-1254 [PMID: 32621869]
  3. Curr Psychol. 2022;41(10):7314-7325 [PMID: 34690475]
  4. Transp Res D Transp Environ. 2022 Apr;105:103206 [PMID: 36570333]
  5. Am J Infect Control. 2020 Sep;48(9):1068-1073 [PMID: 32540369]
  6. Transp Res Interdiscip Perspect. 2020 Jul;6:100166 [PMID: 34173457]
  7. Cities. 2021 May;112:103139 [PMID: 33589850]
  8. Lancet Infect Dis. 2020 Oct;20(10):1141-1150 [PMID: 32562601]
  9. Emerg Infect Dis. 2010 Mar;16(3):538-41 [PMID: 20202441]
  10. Clin Infect Dis. 2021 Sep 7;73(5):e1142-e1150 [PMID: 33277643]
  11. Vaccine. 2002 May 15;20 Suppl 2:S77-81 [PMID: 12110265]
  12. Sci Total Environ. 2021 Apr 15;765:144270 [PMID: 33401062]
  13. Transp Res Part A Policy Pract. 2021 Jun;148:64-78 [PMID: 35702388]
  14. Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):32883-32890 [PMID: 33273120]
  15. Int J Infect Dis. 2021 May;106:199-207 [PMID: 33771668]
  16. Emerg Infect Dis. 2014 May;20(5):882-6 [PMID: 24750988]
  17. Euro Surveill. 2020 Sep;25(37): [PMID: 32945253]
  18. BMJ. 2021 Jun 15;373:n1513 [PMID: 34130949]
  19. J Epidemiol Glob Health. 2021 Mar;11(1):6-9 [PMID: 33095983]
  20. Cities. 2020 Nov;106:102928 [PMID: 32921865]
  21. Ann Intern Med. 2021 Feb;174(2):JC15 [PMID: 33524290]
  22. Transp Res Interdiscip Perspect. 2020 Nov;8:100218 [PMID: 34173472]
  23. Epidemics. 2019 Dec;29:100356 [PMID: 31624039]
  24. Nat Hum Behav. 2021 Sep;5(9):1145-1160 [PMID: 34345009]
  25. Transportation (Amst). 2022;49(4):1211-1243 [PMID: 34276106]
  26. Environ Int. 2021 Nov;156:106723 [PMID: 34161908]
  27. J Infect. 2021 Aug;83(2):207-216 [PMID: 34062182]
  28. PLoS One. 2021 Feb 19;16(2):e0247447 [PMID: 33606826]
  29. J Travel Med. 2022 May 31;29(3): [PMID: 35085384]
  30. J Air Transp Manag. 2020 Oct;89:101932 [PMID: 32952318]
  31. J Urban Health. 2011 Oct;88(5):982-95 [PMID: 21826584]
  32. Proc Natl Acad Sci U S A. 2022 Nov 29;119(48):e2213313119 [PMID: 36417445]
  33. Science. 2020 May 1;368(6490):493-497 [PMID: 32213647]
  34. Cureus. 2020 Apr 14;12(4):e7668 [PMID: 32313784]
  35. Int J Infect Dis. 2020 Jul;96:399-407 [PMID: 32417247]
  36. BMJ. 2021 Apr 14;373:n913 [PMID: 33853842]
  37. J Hazard Mater. 2022 Jan 15;422:126837 [PMID: 34399209]
  38. Transp Res Part A Policy Pract. 2021 Mar;145:269-283 [PMID: 36569966]
  39. Perspect Psychiatr Care. 2021 Oct;57(4):1905-1912 [PMID: 33728666]

Word Cloud

Created with Highcharts 10.0.0travelbehaviourpandemicwaveslocalareasCOVID-19worldbehaviourssubsequentSARS-CoV-2transmissionpopulationfourrelaxation9%1%6%5%respectivelycongestiondataLocalcontinuesthreatenRelaxingpreventingspreadmayincreaseinfectionriskstudyanalysedchangesdifferentgroupsadultchildstudentelderlyHongKongJanuary20214-billionsecond-by-secondsmartcardrecordssubwaysignificantcontinuoushumanobservedResidentssharplyreduced51502720firstfourthflowresidentialworkplacesschoolsshoppingamusementborderdecreasedaverage303%334158854%99weeksalsofoundmanycitiesaroundexperiencedsimilartrendcomparingtrafficperiod2019quantitativefatiguehelpgovernmentspartiallypredictingpersonalprotectivethussuggestaccurateinterventionsespeciallyhighlyinfectiousvirusvariantsOmicroncontinuingwaves-proxyfatigue?COVID-19PublictransportSubwayTraffic

Similar Articles

Cited By (1)