Genomic insight into domestication of rubber tree.

Jinquan Chao, Shaohua Wu, Minjing Shi, Xia Xu, Qiang Gao, Huilong Du, Bin Gao, Dong Guo, Shuguang Yang, Shixin Zhang, Yan Li, Xiuli Fan, Chunyan Hai, Liquan Kou, Jiao Zhang, Zhiwei Wang, Yan Li, Wenbo Xue, Jiang Xu, Xiaomin Deng, Xiao Huang, Xinsheng Gao, Xiaofei Zhang, Yanshi Hu, Xia Zeng, Weiguo Li, Liangsheng Zhang, Shiqing Peng, Jilin Wu, Bingzhong Hao, Xuchu Wang, Hong Yu, Jiayang Li, Chengzhi Liang, Wei-Min Tian
Author Information
  1. Jinquan Chao: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China. ORCID
  2. Shaohua Wu: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China.
  3. Minjing Shi: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China.
  4. Xia Xu: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
  5. Qiang Gao: Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
  6. Huilong Du: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
  7. Bin Gao: Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. ORCID
  8. Dong Guo: Ministry of Agriculture and Rural Affairs Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
  9. Shuguang Yang: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China.
  10. Shixin Zhang: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China.
  11. Yan Li: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China.
  12. Xiuli Fan: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
  13. Chunyan Hai: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
  14. Liquan Kou: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. ORCID
  15. Jiao Zhang: BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
  16. Zhiwei Wang: BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China. ORCID
  17. Yan Li: BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
  18. Wenbo Xue: BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
  19. Jiang Xu: Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China. ORCID
  20. Xiaomin Deng: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China.
  21. Xiao Huang: Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
  22. Xinsheng Gao: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China.
  23. Xiaofei Zhang: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China.
  24. Yanshi Hu: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China.
  25. Xia Zeng: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China.
  26. Weiguo Li: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China.
  27. Liangsheng Zhang: Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
  28. Shiqing Peng: Ministry of Agriculture and Rural Affairs Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
  29. Jilin Wu: Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
  30. Bingzhong Hao: Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
  31. Xuchu Wang: Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China.
  32. Hong Yu: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. ORCID
  33. Jiayang Li: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. jyli@genetics.ac.cn. ORCID
  34. Chengzhi Liang: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. cliang@genetics.ac.cn. ORCID
  35. Wei-Min Tian: National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China. wmtian@163.com.

Abstract

Understanding the genetic basis of rubber tree (Hevea brasiliensis) domestication is crucial for further improving natural rubber production to meet its increasing demand worldwide. Here we provide a high-quality H. brasiliensis genome assembly (1.58 Gb, contig N50 of 11.21 megabases), present a map of genome variations by resequencing 335 accessions and reveal domestication-related molecular signals and a major domestication trait, the higher number of laticifer rings. We further show that HbPSK5, encoding the small-peptide hormone phytosulfokine (PSK), is a key domestication gene and closely correlated with the major domestication trait. The transcriptional activation of HbPSK5 by myelocytomatosis (MYC) members links PSK signaling to jasmonates in regulating the laticifer differentiation in rubber tree. Heterologous overexpression of HbPSK5 in Russian dandelion (Taraxacum kok-saghyz) can increase rubber content by promoting laticifer formation. Our results provide an insight into target genes for improving rubber tree and accelerating the domestication of other rubber-producing plants.

References

  1. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  2. BMC Evol Biol. 2009 May 05;9:90 [PMID: 19416520]
  3. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  4. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  5. Genome Biol. 2020 Sep 14;21(1):245 [PMID: 32928274]
  6. Science. 2018 Oct 19;362(6412):343-347 [PMID: 30166436]
  7. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  8. BMC Bioinformatics. 2006 Feb 09;7:62 [PMID: 16469098]
  9. Comput Appl Biosci. 1997 Oct;13(5):555-6 [PMID: 9367129]
  10. Adv Genet. 2019;104:1-73 [PMID: 31200808]
  11. Nucleic Acids Res. 2018 Nov 30;46(21):e126 [PMID: 30107434]
  12. Genome Res. 2002 Aug;12(8):1269-76 [PMID: 12176934]
  13. Sci Rep. 2016 Jun 24;6:28594 [PMID: 27339202]
  14. Plant Biotechnol J. 2019 Nov;17(11):2041-2061 [PMID: 31150158]
  15. PLoS One. 2011;6(6):e21054 [PMID: 21698171]
  16. Bioinformatics. 2012 Dec 15;28(24):3326-8 [PMID: 23060615]
  17. Trends Genet. 2014 Feb;30(2):57-65 [PMID: 24290193]
  18. Science. 2017 Apr 7;356(6333):92-95 [PMID: 28336562]
  19. Cell Syst. 2016 Jul;3(1):95-8 [PMID: 27467249]
  20. Hortic Res. 2020 Nov 1;7(1):183 [PMID: 33328448]
  21. Mol Plant. 2013 May;6(3):686-703 [PMID: 23142764]
  22. Annu Rev Genet. 2017 Nov 27;51:335-359 [PMID: 28892639]
  23. Sci Rep. 2016 Nov 03;6:36384 [PMID: 27808245]
  24. Trends Genet. 2015 Dec;31(12):709-719 [PMID: 26603610]
  25. BMC Genomics. 2013 Feb 02;14:75 [PMID: 23375136]
  26. Plant Biotechnol J. 2014 Sep;12(7):861-71 [PMID: 24666593]
  27. Sci China Life Sci. 2022 Mar;65(3):515-528 [PMID: 34939160]
  28. Molecules. 2021 Jan 27;26(3): [PMID: 33513965]
  29. J Exp Bot. 2018 Jun 27;69(15):3559-3571 [PMID: 29726901]
  30. BMC Bioinformatics. 2018 Nov 29;19(1):460 [PMID: 30497373]
  31. Adv Genet. 2004;52:51-115 [PMID: 15522733]
  32. J Exp Bot. 2019 Aug 19;70(16):4267-4277 [PMID: 31231771]
  33. J Biochem. 2016 Feb;159(2):209-16 [PMID: 26381537]
  34. Adv Exp Med Biol. 2019;1129:119-129 [PMID: 30968364]
  35. Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):11838-11843 [PMID: 30377268]
  36. New Phytol. 2012 Oct;196(1):29-48 [PMID: 22889076]
  37. Nat Commun. 2019 Nov 25;10(1):5360 [PMID: 31767853]
  38. Sci Rep. 2017 Feb 02;7:41457 [PMID: 28150702]
  39. J Mol Biol. 1997 Apr 25;268(1):78-94 [PMID: 9149143]
  40. Am J Hum Genet. 2007 Sep;81(3):559-75 [PMID: 17701901]
  41. Genetics. 2014 Jun;197(2):573-89 [PMID: 24700103]
  42. Nucleic Acids Res. 2016 Jul 8;44(12):e113 [PMID: 27131372]
  43. Plant Cell. 2018 Mar;30(3):652-667 [PMID: 29511053]
  44. Bioinformatics. 2006 May 15;22(10):1269-71 [PMID: 16543274]
  45. Bioinformatics. 2011 Mar 15;27(6):764-70 [PMID: 21217122]
  46. Mol Plant. 2016 Dec 5;9(12):1667-1670 [PMID: 27717919]
  47. Front Plant Sci. 2018 Jul 03;9:815 [PMID: 30018620]
  48. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W265-8 [PMID: 17485477]
  49. Genome Biol. 2008 Jan 11;9(1):R7 [PMID: 18190707]
  50. J Plant Physiol. 2015 Jun 15;182:95-103 [PMID: 26070085]
  51. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  52. Plant Physiol. 2009 Sep;151(1):334-46 [PMID: 19605551]
  53. Mol Plant. 2019 May 6;12(5):615-631 [PMID: 30999078]
  54. BMC Plant Biol. 2015 Apr 18;15:104 [PMID: 25928745]
  55. Nat Plants. 2016 May 23;2(6):16073 [PMID: 27255837]
  56. Annu Rev Plant Biol. 2021 Jun 17;72:357-385 [PMID: 33481630]
  57. Genome Biol. 2015 Aug 06;16:157 [PMID: 26243257]
  58. Bioinformatics. 2004 Nov 1;20(16):2878-9 [PMID: 15145805]
  59. Front Plant Sci. 2018 Oct 08;9:1387 [PMID: 30349547]
  60. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  61. BMC Bioinformatics. 2004 May 14;5:59 [PMID: 15144565]
  62. Mol Plant. 2020 Feb 3;13(2):336-350 [PMID: 31838037]

MeSH Term

Hevea
Rubber
Domestication
Sequence Analysis, DNA
Genomics
Gene Expression Regulation, Plant

Chemicals

Rubber

Word Cloud

Created with Highcharts 10.0.0rubberdomesticationtreelaticiferHbPSK5brasiliensisimprovingprovidegenomemajortraitPSKinsightUnderstandinggeneticbasisHeveacrucialnaturalproductionmeetincreasingdemandworldwidehigh-qualityHassembly158 GbcontigN501121megabasespresentmapvariationsresequencing335accessionsrevealdomestication-relatedmolecularsignalshighernumberringsshowencodingsmall-peptidehormonephytosulfokinekeygenecloselycorrelatedtranscriptionalactivationmyelocytomatosisMYCmemberslinkssignalingjasmonatesregulatingdifferentiationHeterologousoverexpressionRussiandandelionTaraxacumkok-saghyzcanincreasecontentpromotingformationresultstargetgenesacceleratingrubber-producingplantsGenomic

Similar Articles

Cited By (8)