Understanding mechanisms of antioxidant action in health and disease.

Barry Halliwell
Author Information
  1. Barry Halliwell: Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. bchbh@nus.edu.sg. ORCID

Abstract

Several different reactive oxygen species (ROS) are generated in vivo. They have roles in the development of certain human diseases whilst also performing physiological functions. ROS are counterbalanced by an antioxidant defence network, which functions to modulate ROS levels to allow their physiological roles whilst minimizing the oxidative damage they cause that can contribute to disease development. This Review describes the mechanisms of action of antioxidants synthesized in vivo, antioxidants derived from the human diet and synthetic antioxidants developed as therapeutic agents, with a focus on the gaps in our current knowledge and the approaches needed to close them. The Review also explores the reasons behind the successes and failures of antioxidants in treating or preventing human disease. Antioxidants may have special roles in the gastrointestinal tract, and many lifestyle features known to promote health (especially diet, exercise and the control of blood glucose and cholesterol levels) may be acting, at least in part, by antioxidant mechanisms. Certain reactive sulfur species may be important antioxidants but more accurate determinations of their concentrations in vivo are needed to help assess their contributions.

References

  1. Halliwell, B. & Gutteridge, J. M. Free Radicals in Biology and Medicine 5th edn (Clarendon, 2015).
  2. Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020). [PMID: 32231263]
  3. Lennicke, C. & Cochemé, H. M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell 81, 3691–3707 (2021). [PMID: 34547234]
  4. Forman, H. J. et al. Even free radicals should follow some rules: a guide to free radical research terminology and methodology. Free. Radic. Biol. Med. 78, 233–235 (2015). [PMID: 25462642]
  5. Sies, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022). [PMID: 35190722]
  6. Halliwell, B. Reflections of an aging free radical. Free. Radic. Biol. Med. 161, 234–245 (2020). [PMID: 33059021]
  7. Erusalimsky, J. D. & Moncada, S. Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler. Thromb. Vasc. Biol. 27, 2524–2531 (2007). [PMID: 17885213]
  8. Eiserich, J. P., Butler, J., van der Vliet, A., Cross, C. E. & Halliwell, B. Nitric oxide rapidly scavenges tyrosine and tryptophan radicals. Biochem. J. 310, 745–749 (1995). [PMID: 7575405]
  9. Bayır, H. et al. Achieving life through death: redox biology of lipid peroxidation in ferroptosis. Cell Chem. Biol. 27, 387–408 (2020). [PMID: 32275865]
  10. Halliwell, B., Adhikary, A., Dingfelder, M. & Dizdaroglu, M. Hydroxyl radical is a significant player in oxidative DNA damage in vivo. Chem. Soc. Rev. 50, 8355–8360 (2021). [PMID: 34128512]
  11. Dizdaroglu, M., Coskun, E. & Jaruga, P. Measurement of oxidatively induced DNA damage and its repair, by mass spectrometric techniques. Free. Radic. Res. 49, 525–548 (2015). [PMID: 25812590]
  12. Davis, S. J. et al. Singlet molecular oxygen: from COIL lasers to photodynamic cancer therapy. J. Phys. Chem. B 127, 2289–2301 (2023). [PMID: 36893448]
  13. Li, C., Xue, Y., Ba, X. & Wang, R. The role of 8-oxoG repair systems in tumorigenesis and cancer therapy. Cells 11, 3798 (2022). [PMID: 36497058]
  14. Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 35, 1147–1149 (2007). [PMID: 17956298]
  15. Murphy, M. P. et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 4, 651–662 (2022). [PMID: 35760871]
  16. Butterfield, D. A. Ubiquitin carboxyl-terminal hydrolase L-1 in brain: focus on its oxidative/nitrosative modification and role in brains of subjects with Alzheimer disease and mild cognitive impairment. Free Radic. Biol. Med. 177, 278–286 (2021). [PMID: 34737037]
  17. Bonet-Costa, V., Pomatto, L. C.-D. & Davies, K. J. A. The proteasome and oxidative stress in Alzheimer’s disease. Antioxid. Redox Signal. 25, 886–901 (2016). [PMID: 27392670]
  18. Meng, J. et al. Precision redox: the key for antioxidant pharmacology. Antioxid. Redox Signal. 34, 1069–1082 (2021). [PMID: 33270507]
  19. Cadenas, E. & Sies, H. Lester Packer: on his life and his legacy. Antioxid. Redox Signal. 38, 768–774 (2023). [PMID: 36006367]
  20. Ursini, F., Maiorino, M. & Forman, H. J. Redox homeostasis: the golden mean of healthy living. Redox Biol. 8, 205–215 (2016). [PMID: 26820564]
  21. Rhee, S. G. & Woo, H. A. Multiple functions of 2-Cys peroxiredoxins, I and II, and their regulations via post-translational modifications. Free Radic. Biol. Med. 152, 107–115 (2020). [PMID: 32151745]
  22. Hu, J., Dong, L. & Outten, C. E. The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix. J. Biol. Chem. 283, 29126–29134 (2008). [PMID: 18708636]
  23. Viña, J. & Borrás, C. Women live longer than men: understanding molecular mechanisms offers opportunities to intervene by using estrogenic compounds. Antioxid. Redox Signal. 13, 269–278 (2010). [PMID: 20059401]
  24. Giustarini, D., Dalle-Donne, I., Tsikas, D. & Rossi, R. Oxidative stress and human diseases: origin, link, measurement, mechanisms, and biomarkers. Crit. Rev. Clin. Lab. Sci. 46, 241–281 (2009). [PMID: 19958214]
  25. Halliwell, B. Free radicals and antioxidants — quo vadis? Trends Pharmacol. Sci. 32, 125–130 (2011). [PMID: 21216018]
  26. Frijhoff, J. et al. Clinical relevance of biomarkers of oxidative stress. Antioxid. Redox Signal. 23, 1144–1170 (2015). [PMID: 26415143]
  27. Lim, J. M., Kim, G. & Levine, R. L. Methionine in proteins: it’s not just for protein initiation anymore. Neurochem. Res. 44, 247–257 (2019). [PMID: 29327308]
  28. Han, R.-M., Zhang, J.-P. & Skibsted, L. H. Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules 17, 2140–2160 (2012). [PMID: 22354191]
  29. Bohn, T., de Lera, A. R., Landrier, J.-F. & Rühl, R. Carotenoid metabolites, their tissue and blood concentrations in humans and further bioactivity via retinoid receptor-mediated signalling. Nutr. Res. Rev. 16, 1–14 (2022).
  30. Padayatty, S. J. & Levine, M. Vitamin C: the known and the unknown and Goldilocks. Oral. Dis. 22, 463–493 (2016). [PMID: 26808119]
  31. Traber, M. G. & Head, B. Vitamin E: how much is enough, too much and why! Free Radic. Biol. Med. 177, 212–225 (2021). [PMID: 34699937]
  32. Traber, M. G. et al. α-Tocopherol pharmacokinetics in adults with cystic fibrosis: benefits of supplemental vitamin C administration. Nutrients 14, 3717 (2022). [PMID: 36145092]
  33. Shi, H., Noguchi, N. & Niki, E. Dynamics of antioxidant action of ubiquinol: a reappraisal. Biofactors 9, 141–148 (1999). [PMID: 10416025]
  34. Halliwell, B. Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 97, 1634–1658 (2006). [PMID: 16805774]
  35. Dielschneider, R. F., Henson, E. S. & Gibson, S. B. Lysosomes as oxidative targets for cancer therapy. Oxid. Med. Cell Longev. 2017, 3749157 (2017). [PMID: 28757908]
  36. Brand, M. D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic. Biol. Med. 100, 14–31 (2016). [PMID: 27085844]
  37. Hirschenson, J., Melgar-Bermudez, E. & Mailloux, R. J. The uncoupling proteins: a systematic review on the mechanism used in the prevention of oxidative stress. Antioxidants 11, 322 (2022). [PMID: 35204205]
  38. Castejon-Vega, B., Cordero, M. D. & Sanz, A. How the disruption of mitochondrial redox signalling contributes to ageing. Antioxidants 12, 831 (2023). [PMID: 37107206]
  39. Pedroso, N. et al. Modulation of plasma membrane lipid profile and microdomains by HO in Saccharomyces cerevisiae. Free. Radic. Biol. Med. 46, 289–298 (2009). [PMID: 19027845]
  40. Cao, J. L. et al. An endophytic fungus, Piriformospora indica, enhances drought tolerance of trifoliate orange by modulating the antioxidant defense system and composition of fatty acids. Tree Physiol. 43, 452–466 (2023). [PMID: 36263985]
  41. Liochev, S. I. & Fridovich, I. Modulation of the fumarases of Escherichia coli in response to oxidative stress. Arch. Biochem. Biophys. 301, 379–384 (1993). [PMID: 8460946]
  42. Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64, 97–112 (1995). [PMID: 7574505]
  43. Flohé, L., Toppo, S. & Orian, L. The glutathione peroxidase family: discoveries and mechanism. Free Radic. Biol. Med. 187, 113–122 (2022). [PMID: 35580774]
  44. Bhaskaran, S. et al. Neuronal deletion of MnSOD in mice leads to demyelination, inflammation and progressive paralysis that mimics phenotypes associated with progressive multiple sclerosis. Redox Biol. 59, 102550 (2023). [PMID: 36470129]
  45. Halliwell, B. & Gutteridge, J. M. The antioxidants of human extracellular fluids. Arch. Biochem. Biophys. 280, 1–8 (1990). [PMID: 2191627]
  46. O’Connell, M. et al. Formation of hydroxyl radicals in the presence of ferritin and haemosiderin. Is haemosiderin formation a biological protective mechanism? Biochem. J. 234, 727–731 (1986). [PMID: 3718494]
  47. Winterbourn, C. C. & Metodiewa, D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med. 27, 322–328 (1999). [PMID: 10468205]
  48. Lim, J. C., Suzuki-Kerr, H., Nguyen, T. X., Lim, C. J. J. & Poulsen, R. C. Redox homeostasis in ocular tissues: circadian regulation of glutathione in the lens? Antioxidants 11, 1516 (2022). [PMID: 36009235]
  49. Amponsah, P. S. et al. Peroxiredoxins couple metabolism and cell division in an ultradian cycle. Nat. Chem. Biol. 17, 477–484 (2021). [PMID: 33574615]
  50. Rice-Evans, C. A., Miller, N. J. & Paganga, G. Structure–antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20, 933–956 (1996). [PMID: 8743980]
  51. Halliwell, B., Tang, R. M. Y. & Cheah, I. K. Diet-derived antioxidants: the special case of ergothioneine. Annu. Rev. Food Sci. Technol. 14, 323–345 (2023). [PMID: 36623925]
  52. Williamson, G., Kay, C. D. & Crozier, A. The bioavailability, transport, and bioactivity of dietary flavonoids: a review from a historical perspective. Compr. Rev. Food Sci. Food Saf. 17, 1054–1112 (2018). [PMID: 33350159]
  53. Chen, J. et al. Plant-derived polyphenols as Nrf2 activators to counteract oxidative stress and intestinal toxicity induced by deoxynivalenol in swine: an emerging research direction. Antioxidants 11, 2379 (2022). [PMID: 36552587]
  54. Roberts, J. E. & Dennison, J. The photobiology of lutein and zeaxanthin in the eye. J. Ophthalmol. 2015, 687173 (2015). [PMID: 26798505]
  55. Goodman, D. & Ness, S. The role of oxidative stress in the aging eye. Life 13, 837 (2023). [PMID: 36983992]
  56. Wu, L. Y. et al. Low plasma ergothioneine predicts cognitive and functional decline in an elderly cohort attending memory clinics. Antioxidants 11, 1717 (2022). [PMID: 36139790]
  57. Huang, J., Weinstein, S. J., Yu, K., Männistö, S. & Albanes, D. Relationship between serum α-tocopherol and overall and cause-specific mortality. Circ. Res. 125, 29–40 (2019). [PMID: 31219752]
  58. Hantikainen, E. et al. Dietary antioxidants and the risk of Parkinson disease: the Swedish national march cohort. Neurology 96, e895–e903 (2021). [PMID: 33408141]
  59. Salo, P. M. et al. Serum antioxidant vitamins and respiratory morbidity and mortality: a pooled analysis. Respir. Res. 23, 150 (2022). [PMID: 35681205]
  60. Beydoun, M. A. et al. Association of serum antioxidant vitamins and carotenoids with incident Alzheimer disease and all-cause dementia among US adults. Neurology 98, e2150–e2162 (2022). [PMID: 35508396]
  61. Jiang, Y. W. et al. Dietary intake and circulating concentrations of carotenoids and risk of type 2 diabetes: a dose–response meta-analysis of prospective observational studies. Adv. Nutr. 12, 1723–1733 (2021). [PMID: 33979433]
  62. McKay, G. J. et al. Association of low plasma antioxidant levels with all-cause mortality and coronary events in healthy middle-aged men from France and Northern Ireland in the PRIME study. Eur. J. Nutr. 60, 2631–2641 (2021). [PMID: 33355688]
  63. Levine, M. et al. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc. Natl Acad. Sci. USA 93, 3704–3709 (1996). [PMID: 8623000]
  64. Gutteridge, J. M. C. & Halliwell, B. Antioxidants: molecules, medicines, and myths. Biochem. Biophys. Res. Commun. 393, 561–564 (2010). [PMID: 20171167]
  65. Waring, A. J. & Schorah, C. J. Transport of ascorbic acid in gastric epithelial cells in vitro. Clin. Chim. Acta 275, 137–149 (1998). [PMID: 9721072]
  66. Halliwell, B., Zhao, K. & Whiteman, M. The gastrointestinal tract: a major site of antioxidant action? Free Radic. Res. 33, 819–830 (2000). [PMID: 11237104]
  67. Gorelik, S., Ligumsky, M., Kohen, R. & Kanner, J. The stomach as a ‘bioreactor’: when red meat meets red wine. J. Agric. Food Chem. 56, 5002–5007 (2008). [PMID: 18540628]
  68. Rabkin, B., Tirosh, O. & Kanner, J. Reactivity of vitamin E as an antioxidant in red meat and the stomach medium. J. Agric. Food Chem. 70, 12172–12179 (2022). [PMID: 36121850]
  69. Yong, W. J. et al. Possible genetic risks from heat-damaged DNA in food. ACS Cent. Sci. 9, 1170–1179 (2023).
  70. Rosier, B. T. et al. The importance of nitrate reduction for oral health. J. Dent. Res. 101, 887–897 (2022). [PMID: 35196931]
  71. Zhao, K., Whiteman, M., Spencer, J. & Halliwell, B. DNA damage by nitrite and peroxynitrite: protection by dietary phenols. Meth. Enzymol. 335, 296–307 (2001).
  72. Halliwell, B., Clement, M. V. & Long, L. H. Hydrogen peroxide in the human body. FEBS Lett. 486, 10–13 (2000). [PMID: 11108833]
  73. Cross, C. E., Halliwell, B. & Allen, A. Antioxidant protection: a function of tracheobronchial and gastrointestinal mucus. Lancet 1, 1328–1330 (1984). [PMID: 6145029]
  74. Scarano, A. et al. The chelating ability of plant polyphenols can affect iron homeostasis and gut microbiota. Antioxidants 12, 630 (2023). [PMID: 36978878]
  75. Gebicka, L. & Banasiak, E. Flavonoids as reductants of ferryl hemoglobin. Acta Biochim. Pol. 56, 509–513 (2009). [PMID: 19774231]
  76. Arduini, A. et al. Reduction of sperm whale ferrylmyoglobin by endogenous reducing agents: potential reducible loci of ferrylmyoglobin. Free Radic. Biol. Med. 13, 449–454 (2009).
  77. Halliwell, B. The wanderings of a free radical. Free Radic. Biol. Med. 46, 531–542 (2009). [PMID: 19111608]
  78. Pérez, S., Taléns-Visconti, R., Rius-Pérez, S., Finamor, I. & Sastre, J. Redox signaling in the gastrointestinal tract. Free Radic. Biol. Med. 104, 75–103 (2017). [PMID: 28062361]
  79. Naliyadhara, N. et al. Interplay of dietary antioxidants and gut microbiome in human health: what has been learnt thus far? J. Funct. Foods 100, 105365 (2023).
  80. Lippolis, T., Cofano, M., Caponio, G. R., De Nunzio, V. & Notarnicola, M. Bioaccessibility and bioavailability of diet polyphenols and their modulation of gut microbiota. Int. J. Mol. Sci. 24, 3813 (2023). [PMID: 36835225]
  81. Perler, B. K., Friedman, E. S. & Wu, G. D. The role of the gut microbiota in the relationship between diet and human health. Annu. Rev. Physiol. 85, 449–468 (2023). [PMID: 36375468]
  82. Osborn, L. J. et al. A gut microbial metabolite of dietary polyphenols reverses obesity-driven hepatic steatosis. Proc. Natl Acad. Sci. USA 119, e2202934119 (2022). [PMID: 36417437]
  83. García-Villalba, R. et al. Ellagitannins, urolithins, and neuroprotection: human evidence and the possible link to the gut microbiota. Mol. Asp. Med. 89, 101109 (2023).
  84. Rocha, H. R. et al. Carotenoids diet: digestion, gut microbiota modulation, and inflammatory diseases. Nutrients 15, 2265 (2023). [PMID: 37242148]
  85. Dumitrescu, D. G. et al. A microbial transporter of the dietary antioxidant ergothioneine. Cell 185, 4526–4540.e18 (2022). [PMID: 36347253]
  86. Cheah, I. K. et al. Does Lactobacillus reuteri influence ergothioneine levels in the human body? FEBS Lett. 596, 1241–1251 (2022). [PMID: 35486429]
  87. Zhang, Y. et al. Discovery and structure of a widespread bacterial ABC transporter specific for ergothioneine. Nat. Commun. 13, 7586 (2022). [PMID: 36481738]
  88. D’Onofrio, N. et al. Diet-derived ergothioneine induces necroptosis in colorectal cancer cells by activating the SIRT3/MLKL pathway. FEBS Lett. 596, 1313–1329 (2022). [PMID: 35122251]
  89. Forman, H. J. & Zhang, H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20, 689–709 (2021). [PMID: 34194012]
  90. Casas, A. I. et al. On the clinical pharmacology of reactive oxygen species. Pharmacol. Rev. 72, 801–828 (2020). [PMID: 32859763]
  91. Firsov, A. M. et al. Deuterated polyunsaturated fatty acids inhibit photoirradiation-induced lipid peroxidation in lipid bilayers. J. Photochem. Photobiol. B 229, 112425 (2022). [PMID: 35276579]
  92. Shchepinov, M. S. Polyunsaturated fatty acid deuteration against neurodegeneration. Trends Pharmacol. Sci. 41, 236–248 (2020). [PMID: 32113652]
  93. Giustarini, D., Milzani, A., Dalle-Donne, I. & Rossi, R. How to increase cellular glutathione. Antioxidants 12, 1094 (2023). [PMID: 37237960]
  94. Sylvester, A. L., Zhang, D. X., Ran, S. & Zinkevich, N. S. Inhibiting NADPH oxidases to target vascular and other pathologies: an update on recent experimental and clinical studies. Biomolecules 12, 823 (2022). [PMID: 35740948]
  95. Kusano, T. et al. Targeted knock-in mice expressing the oxidase-fixed form of xanthine oxidoreductase favor tumor growth. Nat. Commun. 10, 4904 (2019). [PMID: 31659168]
  96. Bhawna et al. Monoamine oxidase inhibitors: a concise review with special emphasis on structure activity relationship studies. Eur. J. Med. Chem. 242, 114655 (2022). [PMID: 36037788]
  97. Halliwell, B., Evans, P. J., Kaur, H. & Chirico, S. Drug-derived radicals. Mediators of the side-effects of anti-inflammatory drugs? Ann. Rheum. Dis. 51, 1261–1263 (1992). [PMID: 1466607]
  98. Halliwell, B. Antioxidant characterization. Methodology and mechanism. Biochem. Pharmacol. 49, 1341–1348 (1995). [PMID: 7763275]
  99. Marshall, K. A., Reiter, R. J., Poeggeler, B., Aruoma, O. I. & Halliwell, B. Evaluation of the antioxidant activity of melatonin in vitro. Free Radic. Biol. Med. 21, 307–315 (1996). [PMID: 8855441]
  100. Larsen, E. L., Weimann, A. & Poulsen, H. E. Interventions targeted at oxidatively generated modifications of nucleic acids focused on urine and plasma markers. Free Radic. Biol. Med. 145, 256–283 (2019). [PMID: 31563634]
  101. Azzi, A. Reflections on a century of vitamin E research: looking at the past with an eye on the future. Free Radic. Biol. Med. 175, 155–160 (2021). [PMID: 34478835]
  102. O’Reilly, J. D. et al. Consumption of flavonoids in onions and black tea: lack of effect on F-isoprostanes and autoantibodies to oxidized LDL in healthy humans. Am. J. Clin. Nutr. 73, 1040–1044 (2001). [PMID: 11382657]
  103. Kietzmann, T. Vitamin C: from nutrition to oxygen sensing and epigenetics. Redox Biol. 63, 102753 (2023). [PMID: 37263060]
  104. Pearson, A. G. et al. Peroxiredoxin 2 oxidation reveals hydrogen peroxide generation within erythrocytes during high-dose vitamin C administration. Redox Biol. 43, 101980 (2021). [PMID: 33905956]
  105. Halliwell, B. Artefacts with ascorbate and other redox-active compounds in cell culture: epigenetic modifications, and cell killing due to hydrogen peroxide generation in cell culture media. Free Radic. Res. 52, 907–909 (2018). [PMID: 30124086]
  106. Cross, C. E., van der Vliet, A., O’Neill, C. A., Louie, S. & Halliwell, B. Oxidants, antioxidants, and respiratory tract lining fluids. Environ. Health Perspect. 102, 185–191 (1994). [PMID: 7705296]
  107. Kotha, R. R., Tareq, F. S., Yildiz, E. & Luthria, D. L. Oxidative stress and antioxidants — a critical review on in vitro antioxidant assays. Antioxidants 11, 2388 (2022). [PMID: 36552596]
  108. Lotito, S. B. & Frei, B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic. Biol. Med. 41, 1727–1746 (2006). [PMID: 17157175]
  109. Halliwell, B. Plasma antioxidants. Health benefits of eating chocolate? Nature 426, 787 (2003). [PMID: 14685224]
  110. Pompella, A. et al. The use of total antioxidant capacity as surrogate marker for food quality and its effect on health is to be discouraged. Nutrition 30, 791–793 (2014). [PMID: 24984994]
  111. Sanderson, S. M., Gao, X., Dai, Z. & Locasale, J. W. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat. Rev. Cancer 19, 625–637 (2019). [PMID: 31515518]
  112. Badgley, M. A. et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368, 85–89 (2020). [PMID: 32241947]
  113. Cui, C., Yang, F. & Li, Q. Post-translational modification of GPX4 is a promising target for treating ferroptosis-related diseases. Front. Mol. Biosci. 9, 901565 (2022). [PMID: 35647032]
  114. Glasauer, A., Sena, L. A., Diebold, L. P., Mazar, A. P. & Chandel, N. S. Targeting SOD1 reduces experimental non-small-cell lung cancer. J. Clin. Invest. 124, 117–128 (2014). [PMID: 24292713]
  115. Lv, C. et al. Ainsliadimer A induces ROS-mediated apoptosis in colorectal cancer cells via directly targeting peroxiredoxin 1 and 2. Cell Chem. Biol. 30, 295–307.e5 (2023). [PMID: 36889312]
  116. Milton, V. J. & Sweeney, S. T. Oxidative stress in synapse development and function. Dev. Neurobiol. 72, 100–110 (2012). [PMID: 21793225]
  117. Yi, J. H. et al. Postsynaptic p47phox regulates long-term depression in the hippocampus. Cell Discov. 4, 44 (2018). [PMID: 30181899]
  118. Kishida, K. T. et al. Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol. Cell Biol. 26, 5908–5920 (2006). [PMID: 16847341]
  119. Shah, M. S. & Brownlee, M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ. Res. 118, 1808–1829 (2016). [PMID: 27230643]
  120. Martini, D. et al. What is the current direction of the research on carotenoids and human health? An overview of registered clinical trials. Nutrients 14, 1191 (2022). [PMID: 35334849]
  121. Heyland, D. et al. A randomized trial of glutamine and antioxidants in critically ill patients. N. Engl. J. Med. 368, 1489–1497 (2013). [PMID: 23594003]
  122. Goodman, M., Bostick, R. M., Kucuk, O. & Jones, D. P. Clinical trials of antioxidants as cancer prevention agents: past, present, and future. Free. Radic. Biol. Med. 51, 1068–1084 (2011). [PMID: 21683786]
  123. Praticò, D. Evidence of oxidative stress in Alzheimer’s disease brain and antioxidant therapy: lights and shadows. Ann. N. Y. Acad. Sci. 1147, 70–78 (2008). [PMID: 19076432]
  124. Kryscio, R. J. et al. Association of antioxidant supplement use and dementia in the Prevention of Alzheimer’s Disease by Vitamin E and Selenium trial (PREADViSE). JAMA Neurol. 74, 567–573 (2017). [PMID: 28319243]
  125. Polidori, M. C. & Nelles, G. Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease — challenges and perspectives. Curr. Pharm. Des. 20, 3083–3092 (2014). [PMID: 24079767]
  126. Lloret, A. et al. Vitamin E paradox in Alzheimer’s disease: it does not prevent loss of cognition and may even be detrimental. J. Alzheimers Dis. 17, 143–149 (2009). [PMID: 19494439]
  127. US Preventive Services Task Force et al. Vitamin, mineral, and multivitamin supplementation to prevent cardiovascular disease and cancer: US Preventive Services Task Force Recommendation Statement. J. Am. Med. Assoc. 327, 2326–2333 (2022).
  128. Mason, S. A., Parker, L., van der Pligt, P. & Wadley, G. D. Vitamin C supplementation for diabetes management: a comprehensive narrative review. Free Radic. Biol. Med. 194, 255–283 (2023). [PMID: 36526243]
  129. Al-Khudairy, L. et al. Vitamin C supplementation for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 3, CD011114 (2017). [PMID: 28301692]
  130. Gontero, P. et al. A randomized double-blind placebo controlled phase I–II study on clinical and molecular effects of dietary supplements in men with precancerous prostatic lesions. Chemoprevention or ‘chemopromotion’? Prostate 75, 1177–1186 (2015). [PMID: 25893930]
  131. Somer, S. & Levy, A. P. The role of haptoglobin polymorphism in cardiovascular disease in the setting of diabetes. Int. J. Mol. Sci. 22, 287 (2020). [PMID: 33396615]
  132. Krejbich, P. & Birringer, M. The self-administered use of complementary and alternative medicine (CAM) supplements and antioxidants in cancer therapy and the critical role of Nrf-2 — a systematic review. Antioxidants 11, 2149 (2022). [PMID: 36358521]
  133. Klein, E. A. et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). J. Am. Med. Assoc. 306, 1549–1556 (2011).
  134. Albanes, D. et al. α-Tocopherol and β-carotene supplements and lung cancer incidence in the α-Tocopherol, β-Carotene Cancer Prevention study: effects of base-line characteristics and study compliance. J. Natl Cancer Inst. 88, 1560–1570 (1996). [PMID: 8901854]
  135. Zou, Z. V. et al. Antioxidants promote intestinal tumor progression in mice. Antioxidants 10, 241 (2021). [PMID: 33557356]
  136. Wiel, C. et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178, 330–345 (2019). [PMID: 31257027]
  137. Kashif, M. et al. ROS-lowering doses of vitamins C and A accelerate malignant melanoma metastasis. Redox Biol. 60, 102619 (2023). [PMID: 36774779]
  138. Breau, M. et al. The antioxidant N-acetylcysteine protects from lung emphysema but induces lung adenocarcinoma in mice. JCI Insight 4, e127647 (2019). [PMID: 31578304]
  139. Halliwell, B. Free radicals, antioxidants and human disease: curiosity, cause or consequence? Lancet 344, 721–724 (1994). [PMID: 7915779]
  140. Mattson, M. P. Hormesis defined. Ageing Res. Rev. 7, 1–7 (2008). [PMID: 18162444]
  141. Sun, J. Z., Kaur, H., Halliwell, B., Li, X. Y. & Bolli, R. Use of aromatic hydroxylation of phenylalanine to measure production of hydroxyl radicals after myocardial ischemia in vivo. Direct evidence for a pathogenetic role of the hydroxyl radical in myocardial stunning. Circ. Res. 73, 534–549 (1993). [PMID: 8394226]
  142. Tang, X. L. et al. Oxidant species trigger late preconditioning against myocardial stunning in conscious rabbits. Am. J. Physiol. Heart Circ. Physiol. 282, H281–H291 (2002). [PMID: 11748073]
  143. Manda, G. et al. Pros and cons of NRF2 activation as adjunctive therapy in rheumatoid arthritis. Free Radic. Biol. Med. 190, 179–201 (2022). [PMID: 35964840]
  144. Halliwell, B., Hoult, J. R. & Blake, D. R. Oxidants, inflammation, and anti-inflammatory drugs. FASEB J. 2, 2867–2873 (1988). [PMID: 2844616]
  145. Hultqvist, M., Olsson, L. M., Gelderman, K. A. & Holmdahl, R. The protective role of ROS in autoimmune disease. Trends Immunol. 30, 201–208 (2009). [PMID: 19356981]
  146. Zhong, J. et al. Association of NOX2 subunits genetic variants with autoimmune diseases. Free Radic. Biol. Med. 125, 72–80 (2018). [PMID: 29526808]
  147. Nunoi, H., Nakamura, H., Nishimura, T. & Matsukura, M. Recent topics and advanced therapies in chronic granulomatous disease. Hum. Cell 36, 515–527 (2023). [PMID: 36534309]
  148. Goh, J., Wong, E., Soh, J., Maier, A. B. & Kennedy, B. K. Targeting the molecular & cellular pillars of human aging with exercise. FEBS J. 290, 649–668 (2023). [PMID: 34968001]
  149. Jackson, M. J. Monitoring of hydrogen peroxide and other reactive oxygen and nitrogen species generated by skeletal muscle. Methods Enzymol. 528, 279–300 (2013). [PMID: 23849872]
  150. O’Neill, C. A., Stebbins, C. L., Bonigut, S., Halliwell, B. & Longhurst, J. C. Production of hydroxyl radicals in contracting skeletal muscle of cats. J. Appl. Physiol. 81, 1197–1206 (1996). [PMID: 8889754]
  151. Jordan, A. C., Perry, C. G. R. & Cheng, A. J. Promoting a pro-oxidant state in skeletal muscle: potential dietary, environmental, and exercise interventions for enhancing endurance-training adaptations. Free Radic. Biol. Med. 176, 189–202 (2021). [PMID: 34560246]
  152. Gomez-Cabrera, M. C., Salvador-Pascual, A., Cabo, H., Ferrando, B. & Viña, J. Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radic. Biol. Med. 86, 37–46 (2015). [PMID: 25889822]
  153. Merry, T. L. & Ristow, M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J. Physiol. 594, 5135–5147 (2016). [PMID: 26638792]
  154. Mason, S. A., Trewin, A. J., Parker, L. & Wadley, G. D. Antioxidant supplements and endurance exercise: current evidence and mechanistic insights. Redox Biol. 35, 101471 (2020). [PMID: 32127289]
  155. Masenga, S. K., Kabwe, L. S., Chakulya, M. & Kirabo, A. Mechanisms of oxidative stress in metabolic syndrome. Int. J. Mol. Sci. 24, 7898 (2023). [PMID: 37175603]
  156. Butterfield, D. A. & Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 20, 148–160 (2019). [PMID: 30737462]
  157. Butterfield, D. A. Oxidative stress in brain in amnestic mild cognitive impairment. Antioxidants 12, 462 (2023). [PMID: 36830020]
  158. Bradley-Whitman, M. A. et al. Nucleic acid oxidation: an early feature of Alzheimer’s disease. J. Neurochem. 128, 294–304 (2014). [PMID: 24032632]
  159. Martins, R. N. et al. Alzheimer’s disease: a journey from amyloid peptides and oxidative stress, to biomarker technologies and disease prevention strategies — gains from AIBL and DIAN cohort studies. J. Alzheimers Dis. 62, 965–992 (2018). [PMID: 29562546]
  160. Xie, H. et al. Rapid cell death is preceded by amyloid plaque-mediated oxidative stress. Proc. Natl Acad. Sci. USA 110, 7904–7909 (2013). [PMID: 23610434]
  161. Fujikawa, R. & Tsuda, M. The functions and phenotypes of microglia in Alzheimer’s disease. Cells 12, 1207 (2023). [PMID: 37190116]
  162. Giraldo, E., Lloret, A., Fuchsberger, T. & Viña, J. Aβ and tau toxicities in Alzheimer’s are linked via oxidative stress-induced p38 activation: protective role of vitamin E. Redox Biol. 2, 873–877 (2014). [PMID: 25061569]
  163. Whitmore, C. A. et al. Longitudinal consumption of ergothioneine reduces oxidative stress and amyloid plaques and restores glucose metabolism in the 5XFAD mouse model of Alzheimer’s disease. Pharmaceuticals 15, 742 (2022). [PMID: 35745661]
  164. Cheah, I. K. et al. Inhibition of amyloid-induced toxicity by ergothioneine in a transgenic Caenorhabditis elegans model. FEBS Lett. 593, 2139–2150 (2019). [PMID: 31211853]
  165. Reutens, A. T. et al. A physician-initiated double-blind, randomised, placebo-controlled, phase 2 study evaluating the efficacy and safety of inhibition of NADPH oxidase with the first-in-class Nox-1/4 inhibitor, GKT137831, in adults with type 1 diabetes and persistently elevated urinary albumin excretion: protocol and statistical considerations. Contemp. Clin. Trials 90, 105892 (2020). [PMID: 31740428]
  166. Rossman, M. J., Gioscia-Ryan, R. A., Clayton, Z. S., Murphy, M. P. & Seals, D. R. Targeting mitochondrial fitness as a strategy for healthy vascular aging. Clin. Sci. 134, 1491–1519 (2020).
  167. Mason, S. A., Wadley, G. D., Keske, M. A. & Parker, L. Effect of mitochondrial-targeted antioxidants on glycaemic control, cardiovascular health, and oxidative stress in humans: a systematic review and meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 24, 1047–1060 (2022). [PMID: 35165982]
  168. Visioli, F., Ingram, A., Beckman, J. S., Magnusson, K. R. & Hagen, T. M. Strategies to protect against age-related mitochondrial decay: do natural products and their derivatives help? Free Radic. Biol. Med. 178, 330–346 (2022). [PMID: 34890770]
  169. Devos, D. et al. Trial of deferiprone in Parkinson’s disease. N. Engl. J. Med. 387, 2045–2055 (2022). [PMID: 36449420]
  170. Foster, L. et al. Effect of deferoxamine on trajectory of recovery after intracerebral hemorrhage: a post hoc analysis of the i-DEF trial. Stroke 53, 2204–2210 (2022). [PMID: 35306827]
  171. Kupershmidt, L. & Youdim, M. B. H. The neuroprotective activities of the novel multi-target iron-chelators in models of Alzheimer’s disease, amyotrophic lateral sclerosis and aging. Cells 12, 763 (2023). [PMID: 36899898]
  172. Batinic-Haberle, I. et al. HO-driven anticancer activity of Mn porphyrins and the underlying molecular pathways. Oxid. Med. Cell Longev. 2021, 6653790 (2021). [PMID: 33815656]
  173. Crow, J. Commentary on: catalytic antioxidants to treat amyotrophic lateral sclerosis. Arch. Clin. Toxicol. 4, 1–4 (2022).
  174. Gentinetta, T. et al. Plasma-derived hemopexin as a candidate therapeutic agent for acute vaso-occlusion in sickle cell disease: preclinical evidence. J. Clin. Med. 11, 630 (2022). [PMID: 35160081]
  175. Snow, B. J. et al. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov. Disord. 25, 1670–1674 (2010). [PMID: 20568096]
  176. Sies, H. & Parnham, M. J. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Free Radic. Biol. Med. 156, 107–112 (2020). [PMID: 32598985]
  177. Ramli, F. F., Cowen, P. J. & Godlewska, B. R. The potential use of ebselen in treatment-resistant depression. Pharmaceuticals 15, 485 (2022). [PMID: 35455482]
  178. Zhang, H. et al. Hepcidin promoted ferroptosis through iron metabolism which is associated with DMT1 signaling activation in early brain injury following subarachnoid hemorrhage. Oxid. Med. Cell Longev. 2021, 9800794 (2021). [PMID: 34987706]
  179. Sahoo, P. et al. Detailed insights into the inhibitory mechanism of new ebselen derivatives against main protease (M) of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). ACS Pharmacol. Transl. Sci. 6, 171–180 (2023). [PMID: 36650888]
  180. Beckman, J. A., Goldfine, A. B., Leopold, J. A. & Creager, M. A. Ebselen does not improve oxidative stress and vascular function in patients with diabetes: a randomized, crossover trial. Am. J. Physiol. Heart Circ. Physiol. 311, H1431–H1436 (2016). [PMID: 27765750]
  181. Kobayashi, S., Fukuma, S., Ikenoue, T., Fukuhara, S. & Kobayashi, S. Effect of edaravone on neurological symptoms in real-world patients with acute ischemic stroke. Stroke 50, 1805–1811 (2019). [PMID: 31164072]
  182. Soares, P. et al. Drug discovery and amyotrophic lateral sclerosis: emerging challenges and therapeutic opportunities. Ageing Res. Rev. 83, 101790 (2023). [PMID: 36402404]
  183. Tabrizchi, R. Edaravone Mitsubishi-Tokyo. Curr. Opin. Investig. Drugs 1, 347–354 (2000). [PMID: 11249718]
  184. Guo, J., Tuo, Q.-Z. & Lei, P. Iron, ferroptosis, and ischemic stroke. J. Neurochem. 165, 487–520 (2023). [PMID: 36908209]
  185. Ramachandran, A. & Jaeschke, H. Oxidant stress and acetaminophen hepatotoxicity: mechanism-based drug development. Antioxid. Redox Signal. 35, 718–733 (2021). [PMID: 34232786]
  186. Šalamon, Š., Kramar, B., Marolt, T. P., Poljšak, B. & Milisav, I. Medical and dietary uses of N-acetylcysteine. Antioxidants 8, 111 (2019). [PMID: 31035402]
  187. Tsikas, D. & Mikuteit, M. N-Acetyl-L-cysteine in human rheumatoid arthritis and its effects on nitric oxide (NO) and malondialdehyde (MDA): analytical and clinical considerations. Amino Acids 54, 1251–1260 (2022). [PMID: 35829920]
  188. Skov, M. et al. The effect of short-term, high-dose oral N-acetylcysteine treatment on oxidative stress markers in cystic fibrosis patients with chronic P. aeruginosa infection — a pilot study. J. Cyst. Fibros. 14, 211–218 (2015). [PMID: 25458464]
  189. Childs, A., Jacobs, C., Kaminski, T., Halliwell, B. & Leeuwenburgh, C. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic. Biol. Med. 31, 745–753 (2001). [PMID: 11557312]
  190. Aruoma, O. I., Halliwell, B., Hoey, B. M. & Butler, J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic. Biol. Med. 6, 593–597 (1989). [PMID: 2546864]
  191. Hayakawa, M. et al. Evidence that reactive oxygen species do not mediate NF-κB activation. EMBO J. 22, 3356–3366 (2003). [PMID: 12839997]
  192. Mlejnek, P. Direct interaction between N-acetylcysteine and cytotoxic electrophile — an overlooked in vitro mechanism of protection. Antioxidants 11, 1485 (2022). [PMID: 36009205]
  193. Pedre, B., Barayeu, U., Ezeriņa, D. & Dick, T. P. The mechanism of action of N-acetylcysteine (NAC): the emerging role of HS and sulfane sulfur species. Pharmacol. Ther. 228, 107916 (2021). [PMID: 34171332]
  194. Ezeriņa, D., Takano, Y., Hanaoka, K., Urano, Y. & Dick, T. P. N-Acetylcysteine functions as a fast-acting antioxidant by triggering intracellular HS and sulfane sulfur production. Cell Chem. Biol. 25, 447–459 (2018). [PMID: 29429900]
  195. Oliva, A., Pallecchi, L., Rossolini, G. M., Travaglino, F. & Zanatta, P. Rationale and evidence for the adjunctive use of N-acetylcysteine in multidrug-resistant infections. Eur. Rev. Med. Pharmacol. Sci. 27, 4316–4325 (2023). [PMID: 37203858]
  196. Lingappan, K. NF-κB in oxidative stress. Curr. Opin. Toxicol. 7, 81–86 (2018). [PMID: 29862377]
  197. Sivandzade, F., Prasad, S., Bhalerao, A. & Cucullo, L. NRF2 and NF-κB interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches. Redox Biol. 21, 101059 (2019). [PMID: 30576920]
  198. Wardyn, J. D., Ponsford, A. H. & Sanderson, C. M. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem. Soc. Trans. 43, 621–626 (2015). [PMID: 26551702]
  199. Krafczyk, N. & Klotz, L.-O. FOXO transcription factors in antioxidant defense. IUBMB Life 74, 53–61 (2022). [PMID: 34423888]
  200. Labuschagne, C. F., Zani, F. & Vousden, K. H. Control of metabolism by p53 — cancer and beyond. Biochim. Biophys. Acta Rev. Cancer 1870, 32–42 (2018). [PMID: 29883595]
  201. Hayes, J. D., Dinkova-Kostova, A. T. & Tew, K. D. Oxidative stress in cancer. Cancer Cell 38, 167–197 (2020). [PMID: 32649885]
  202. Rius-Pérez, S. et al. PGC-1α, inflammation, and oxidative stress: an integrative view in metabolism. Oxid. Med. Cell Longev. 2020, 1452696 (2020). [PMID: 32215168]
  203. Tao, R. et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 40, 893–904 (2010). [PMID: 21172655]
  204. Anamika, Roy, A. & Trigun, S. K. Hippocampus mitochondrial MnSOD activation by a SIRT3 activator, honokiol, correlates with its deacetylation and upregulation of FoxO3a and PGC1α in a rat model of ammonia neurotoxicity. J. Cell Biochem. 124, 606–618 (2023). [PMID: 36922709]
  205. Wang, R. et al. Reactive oxygen species and NRF2 signaling, friends or foes in cancer? Biomolecules 13, 353 (2023). [PMID: 36830722]
  206. Robertson, H., Dinkova-Kostova, A. T. & Hayes, J. D. NRF2 and the ambiguous consequences of its activation during initiation and the subsequent stages of tumourigenesis. Cancers 12, 3609 (2020). [PMID: 33276631]
  207. Lu, M.-C., Ji, J.-A., Jiang, Z.-Y. & You, Q.-D. The Keap1–Nrf2–ARE pathway as a potential preventive and therapeutic target: an update. Med. Res. Rev. 36, 924–963 (2016). [PMID: 27192495]
  208. Yumimoto, K., Sugiyama, S., Motomura, S., Takahashi, D. & Nakayama, K. I. Molecular evolution of Keap1 was essential for adaptation of vertebrates to terrestrial life. Sci. Adv. 9, eadg2379 (2023). [PMID: 37205751]
  209. Ramsey, C. P. et al. Expression of Nrf2 in neurodegenerative diseases. J. Neuropathol. Exp. Neurol. 66, 75–85 (2007). [PMID: 17204939]
  210. Uruno, A. & Yamamoto, M. The KEAP1–NRF2 system and neurodegenerative diseases. Antioxid. Redox Signal. 38, 974–988 (2023). [PMID: 36930785]
  211. Michaličková, D. et al. Edaravone attenuates disease severity of experimental auto-immune encephalomyelitis and increases gene expression of Nrf2 and HO-1. Physiol. Res. 71, 147–157 (2022). [PMID: 35043649]
  212. Wu, Y. et al. Ebselen ameliorates renal ischemia–reperfusion injury via enhancing autophagy in rats. Mol. Cell Biochem. 477, 1873–1885 (2022). [PMID: 35338455]
  213. Egbujor, M. C., Petrosino, M., Zuhra, K. & Saso, L. The role of organosulfur compounds as Nrf2 activators and their antioxidant effects. Antioxidants 11, 1255 (2022). [PMID: 35883746]
  214. Tanase, D. M. et al. Oxidative stress and NRF2/KEAP1/ARE pathway in diabetic kidney disease (DKD): new perspectives. Biomolecules 12, 1227 (2022). [PMID: 36139066]
  215. Robledinos-Antón, N., Fernández-Ginés, R., Manda, G. & Cuadrado, A. Activators and inhibitors of NRF2: a review of their potential for clinical development. Oxid. Med. Cell Longev. 2019, 9372182 (2019). [PMID: 31396308]
  216. Satoh, T. & Lipton, S. Recent advances in understanding NRF2 as a druggable target: development of pro-electrophilic and non-covalent NRF2 activators to overcome systemic side effects of electrophilic drugs like dimethyl fumarate. F1000Res 6, 2138 (2017). [PMID: 29263788]
  217. Liebmann, M. et al. Dimethyl fumarate treatment restrains the antioxidative capacity of T cells to control autoimmunity. Brain 144, 3126–3141 (2021). [PMID: 34849598]
  218. Dong, Y. & Yong, V. W. Oxidized phospholipids as novel mediators of neurodegeneration. Trends Neurosci. 45, 419–429 (2022). [PMID: 35393134]
  219. Signorini, C. et al. Relevance of 4-F-neuroprostane and 10-F-neuroprostane to neurological diseases. Free Radic. Biol. Med. 115, 278–287 (2018). [PMID: 29233794]
  220. Choi, I.-Y. et al. In vivo evidence of oxidative stress in brains of patients with progressive multiple sclerosis. Mult. Scler. 24, 1029–1038 (2018). [PMID: 28569645]
  221. Hammer, A. et al. The NRF2 pathway as potential biomarker for dimethyl fumarate treatment in multiple sclerosis. Ann. Clin. Transl. Neurol. 5, 668–676 (2018). [PMID: 29928650]
  222. Schulze-Topphoff, U. et al. Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2. Proc. Natl Acad. Sci. USA 113, 4777–4782 (2016). [PMID: 27078105]
  223. Zhao, Z., Dong, R., Cui, K., You, Q. & Jiang, Z. An updated patent review of Nrf2 activators (2020–present). Expert. Opin. Ther. Pat. 33, 29–49 (2023). [PMID: 36800917]
  224. Sun, Y. et al. A potent phosphodiester Keap1–Nrf2 protein–protein interaction inhibitor as the efficient treatment of Alzheimer’s disease. Redox Biol. 64, 102793 (2023). [PMID: 37385075]
  225. Mullard, A. FDA approves first Friedreich’s ataxia drug. Nat. Rev. Drug Discov. 22, 258 (2023). [PMID: 36890218]
  226. Wakabayashi, N. et al. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat. Genet. 35, 238–245 (2003). [PMID: 14517554]
  227. Stanaway, J. D. et al. Health effects associated with vegetable consumption: a burden of proof study. Nat. Med. 28, 2066–2074 (2022). [PMID: 36216936]
  228. Wang, D. D. et al. Fruit and vegetable intake and mortality: results from 2 prospective cohort studies of US men and women and a meta-analysis of 26 cohort studies. Circulation 143, 1642–1654 (2021). [PMID: 33641343]
  229. Sheng, L. T. et al. Quantity and variety of fruit and vegetable intake in midlife and cognitive impairment in late life: a prospective cohort study. Br. J. Nutr. 14, 1–10 (2022).
  230. Davis, C. R., Bryan, J., Hodgson, J. M., Woodman, R. & Murphy, K. J. A Mediterranean diet reduces F-isoprostanes and triglycerides among older australian men and women after 6 months. J. Nutr. 147, 1348–1355 (2017). [PMID: 28566524]
  231. Mišík, M. et al. Use of the single cell gel electrophoresis assay for the detection of DNA-protective dietary factors: results of human intervention studies. Mutat. Res. Rev. Mutat. Res. 791, 108458 (2023). [PMID: 37031732]
  232. Anderson, C., Milne, G. L., Sandler, D. P. & Nichols, H. B. Oxidative stress in relation to diet and physical activity among premenopausal women. Br. J. Nutr. 116, 1416–1424 (2016). [PMID: 27725001]
  233. Arcusa, R. et al. Anti-inflammatory and antioxidant capacity of a fruit and vegetable-based nutraceutical measured by urinary oxylipin concentration in a healthy population: a randomized, double-blind, placebo-controlled clinical trial. Antioxidants 11, 1342 (2022). [PMID: 35883832]
  234. Mao, Z. & Bostick, R. M. Associations of dietary, lifestyle, other participant characteristics, and oxidative balance scores with plasma F-isoprostanes concentrations in a pooled cross-sectional study. Eur. J. Nutr. 61, 1541–1560 (2022). [PMID: 34860269]
  235. Lee, C. Y. et al. Cautions in the use of biomarkers of oxidative damage; the vascular and antioxidant effects of dark soy sauce in humans. Biochem. Biophys. Res. Commun. 344, 906–911 (2006). [PMID: 16631617]
  236. Park, Y. M. et al. Association of dietary and plasma carotenoids with urinary F-isoprostanes. Eur. J. Nutr. 61, 2711–2723 (2022). [PMID: 35253072]
  237. McAnulty, S. R. et al. Effect of daily fruit ingestion on angiotensin converting enzyme activity, blood pressure, and oxidative stress in chronic smokers. Free Radic. Res. 39, 1241–1248 (2005). [PMID: 16298751]
  238. Møller, P. et al. No effect of 600 grams fruit and vegetables per day on oxidative DNA damage and repair in healthy nonsmokers. Cancer Epidemiol. Biomark. Prev. 12, 1016–1022 (2003).
  239. Cheah, I. K., Tang, R. M. Y., Yew, T. S. Z., Lim, K. H. C. & Halliwell, B. Administration of pure ergothioneine to healthy human subjects: uptake, metabolism, and effects on biomarkers of oxidative damage and inflammation. Antioxid. Redox Signal. 26, 193–206 (2017). [PMID: 27488221]
  240. Block, G. et al. The effect of vitamins C and E on biomarkers of oxidative stress depends on baseline level. Free Radic. Biol. Med. 45, 377–384 (2008). [PMID: 18455517]
  241. Morrow, J. D. et al. Increase in circulating products of lipid peroxidation (F-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N. Engl. J. Med. 332, 1198–1203 (1995). [PMID: 7700313]
  242. Seet, R. C. S. et al. Biomarkers of oxidative damage in cigarette smokers: which biomarkers might reflect acute versus chronic oxidative stress? Free Radic. Biol. Med. 50, 1787–1793 (2011). [PMID: 21420490]
  243. Halliwell, B. The antioxidant paradox. Lancet 355, 1179–1180 (2000). [PMID: 10791396]
  244. Halliwell, B. Reactive oxygen species (ROS), oxygen radicals and antioxidants: where are we now, where is the field going and where should we go? Biochem. Biophys. Res. Commun. 633, 17–19 (2022). [PMID: 36344150]
  245. Whiteman, M. et al. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J. Neurochem. 90, 765–768 (2004). [PMID: 15255956]
  246. Malaeb, H. et al. Stable isotope dilution mass spectrometry quantification of hydrogen sulfide and thiols in biological matrices. Redox Biol. 55, 102401 (2022). [PMID: 35870340]
  247. Noguchi, N., Saito, Y. & Niki, E. Actions of thiols, persulfides, and polysulfides as free radical scavenging antioxidants. (Online ahead of print) Antioxid. Redox Signal. https://doi.org/10.1089/ars.2022.0191 (2023).
  248. Barayeu, U. et al. Hydropersulfides inhibit lipid peroxidation and ferroptosis by scavenging radicals. Nat. Chem. Biol. 19, 28–37 (2023). [PMID: 36109647]
  249. Stockwell, B. R. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421 (2022). [PMID: 35803244]
  250. Cao, X. et al. A review of hydrogen sulfide synthesis, metabolism, and measurement: is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid. Redox Signal. 31, 1–38 (2019). [PMID: 29790379]
  251. Shieh, M., Xu, S., Lederberg, O. L. & Xian, M. Detection of sulfane sulfur species in biological systems. Redox Biol. 57, 102502 (2022). [PMID: 36252340]
  252. Uchiyama, J., Akiyama, M., Hase, K., Kumagai, Y. & Kim, Y.G. Gut microbiota reinforce host antioxidant capacity via the generation of reactive sulfur species. Cell Rep. 38, 110479 (2022).
  253. Constantino, L. et al. Extracellular superoxide dismutase is necessary to maintain renal blood flow during sepsis development. Intensive Care Med. Exp. 5, 15 (2017). [PMID: 28303482]
  254. Mansilla, S. et al. Redox sensitive human mitochondrial aconitase and its interaction with frataxin: in vitro and in silico studies confirm that it takes two to tango. Free Radic. Biol. Med. 197, 71–84 (2023). [PMID: 36738801]
  255. Radi, R. Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine. Proc. Natl Acad. Sci. USA 115, 5839–5848 (2018). [PMID: 29802228]
  256. Hansberg, W. Monofunctional heme-catalases. Antioxidants 11, 2173 (2022). [PMID: 36358546]
  257. Lessig, J. & Fuchs, B. Plasmalogens in biological systems: their role in oxidative processes in biological membranes, their contribution to pathological processes and aging and plasmalogen analysis. Curr. Med. Chem. 16, 2021–2041 (2009). [PMID: 19519379]
  258. Guo, Y. et al. Heme in cardiovascular diseases: a ubiquitous dangerous molecule worthy of vigilance. Front. Cell Dev. Biol. 9, 781839 (2021). [PMID: 35127704]
  259. Evans, P. J. et al. Metal ions catalytic for free radical reactions in the plasma of patients with fulminant hepatic failure. Free Radic. Res. 20, 139–144 (1994). [PMID: 8019638]
  260. Halliwell, B. Albumin — an important extracellular antioxidant? Biochem. Pharmacol. 37, 569–571 (1988). [PMID: 3277637]
  261. Colombo, G. et al. Redox albuminomics: oxidized albumin in human diseases. Antioxid. Redox Signal. 17, 1515–1527 (2012). [PMID: 22587567]
  262. Halliwell, B. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch. Biochem. Biophys. 476, 107–112 (2008). [PMID: 18284912]
  263. Cheah, I. K. & Halliwell, B. Could ergothioneine aid in the treatment of coronavirus patients? Antioxidants 9, 595 (2020). [PMID: 32646061]
  264. Redman, L. M. et al. Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell Metab. 27, 805–815.e4 (2018). [PMID: 29576535]
  265. Monzo-Beltran, L. et al. One-year follow-up of clinical, metabolic and oxidative stress profile of morbid obese patients after laparoscopic sleeve gastrectomy. 8-Oxo-dG as a clinical marker. Redox Biol. 12, 389–402 (2017). [PMID: 28319890]
  266. Mollazadeh, H., Carbone, F., Montecucco, F., Pirro, M. & Sahebkar, A. Oxidative burden in familial hypercholesterolemia. J. Cell Physiol. 233, 5716–5725 (2018). [PMID: 29323716]
  267. Moutzouri, E. et al. Comparison of the effect of simvastatin versus simvastatin/ezetimibe versus rosuvastatin on markers of inflammation and oxidative stress in subjects with hypercholesterolemia. Atherosclerosis 231, 8–14 (2013). [PMID: 24125402]
  268. Monnier, L. et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. J. Am. Med. Assoc. 295, 1681–1687 (2006).
  269. Roe, N. D. & Ren, J. Nitric oxide synthase uncoupling: a therapeutic target in cardiovascular diseases. Vasc. Pharmacol. 57, 168–172 (2012).
  270. Ogboo, B. C. et al. Architecture of the NADPH oxidase family of enzymes. Redox Biol. 52, 102298 (2022). [PMID: 35334249]
  271. Andrés, C. M. C., Pérez de la Lastra, J. M., Juan, C. A., Plou, F. J. & Pérez-Lebeña, E. The role of reactive species on innate immunity. Vaccines 10, 1735 (2022). [PMID: 36298601]
  272. Weigelin, B. & Friedl, P. T cell-mediated additive cytotoxicity — death by multiple bullets. Trends Cancer 8, 980–987 (2022). [PMID: 35965200]
  273. Halliwell, B. Oxidative stress and cancer: have we moved forward? Biochem. J. 401, 1–11 (2007). [PMID: 17150040]
  274. Shah, M. A. & Rogoff, H. A. Implications of reactive oxygen species on cancer formation and its treatment. Semin. Oncol. 48, 238–245 (2021). [PMID: 34548190]
  275. Renken, S. et al. Targeting of Nrf2 improves antitumoral responses by human NK cells, TIL and CAR T cells during oxidative stress. J. Immunother. Cancer 10, e004458 (2022). [PMID: 35738800]
  276. Balta, E. et al. Expression of TRX1 optimizes the antitumor functions of human CAR T cells and confers resistance to a pro-oxidative tumor microenvironment. Front. Immunol. 13, 1063313 (2022). [PMID: 36591284]
  277. Lamb, N. J., Quinlan, G. J., Mumby, S., Evans, T. W. & Gutteridge, J. M. Haem oxygenase shows pro-oxidant activity in microsomal and cellular systems: implications for the release of low-molecular-mass iron. Biochem. J. 344, 153–158 (1999). [PMID: 10548545]
  278. Terpstra, M., Torkelson, C., Emir, U., Hodges, J. S. & Raatz, S. Noninvasive quantification of human brain antioxidant concentrations after an intravenous bolus of vitamin C. NMR Biomed. 24, 521–528 (2011). [PMID: 21674654]
  279. Schaffer, S. & Halliwell, B. Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations. Genes Nutr. 7, 99–109 (2012). [PMID: 22012276]
  280. Witting, P. K., Mohr, D. & Stocker, R. Assessment of prooxidant activity of vitamin E in human low-density lipoprotein and plasma. Methods Enzymol. 299, 362–375 (1999). [PMID: 9916215]
  281. Neuhouser, M. L. et al. Fruits and vegetables are associated with lower lung cancer risk only in the placebo arm of the β-Carotene and Retinol Efficacy Trial (CARET). Cancer Epidemiol. Biomark. Prev. 12, 350–358 (2003).
  282. Seet, R. C. S. et al. Oxidative damage in ischemic stroke revealed using multiple biomarkers. Stroke 42, 2326–2329 (2011). [PMID: 21700941]

Word Cloud

Similar Articles

Cited By